Term Rewriting System R:
[x, y]
f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))
g(0, x) -> g(f(x, x), x)

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

F(s(x), s(y)) -> F(x, y)
G(0, x) -> G(f(x, x), x)
G(0, x) -> F(x, x)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳AFS`

Dependency Pair:

F(s(x), s(y)) -> F(x, y)

Rules:

f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))
g(0, x) -> g(f(x, x), x)

Strategy:

innermost

The following dependency pair can be strictly oriented:

F(s(x), s(y)) -> F(x, y)

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2) -> F(x1, x2)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 3`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳AFS`

Dependency Pair:

Rules:

f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))
g(0, x) -> g(f(x, x), x)

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Argument Filtering and Ordering`

Dependency Pair:

G(0, x) -> G(f(x, x), x)

Rules:

f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))
g(0, x) -> g(f(x, x), x)

Strategy:

innermost

The following dependency pair can be strictly oriented:

G(0, x) -> G(f(x, x), x)

The following usable rules for innermost w.r.t. to the AFS can be oriented:

f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
0 > f > s

resulting in one new DP problem.
Used Argument Filtering System:
G(x1, x2) -> G(x1, x2)
f(x1, x2) -> f
s(x1) -> s

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`           →DP Problem 4`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))
g(0, x) -> g(f(x, x), x)

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes