R
↳Dependency Pair Analysis
:'(:(x, y), z) -> :'(x, :(z, i(y)))
:'(:(x, y), z) -> :'(z, i(y))
:'(:(x, y), z) -> I(y)
:'(e, x) -> I(x)
:'(x, :(y, i(x))) -> I(y)
:'(x, :(y, :(i(x), z))) -> :'(i(z), y)
:'(x, :(y, :(i(x), z))) -> I(z)
:'(i(x), :(y, x)) -> I(y)
:'(i(x), :(y, :(x, z))) -> :'(i(z), y)
:'(i(x), :(y, :(x, z))) -> I(z)
I(:(x, y)) -> :'(y, x)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
:'(i(x), :(y, :(x, z))) -> I(z)
:'(i(x), :(y, :(x, z))) -> :'(i(z), y)
:'(x, :(y, :(i(x), z))) -> I(z)
:'(e, x) -> I(x)
I(:(x, y)) -> :'(y, x)
:'(:(x, y), z) -> I(y)
:'(:(x, y), z) -> :'(z, i(y))
:'(x, :(y, :(i(x), z))) -> :'(i(z), y)
:'(:(x, y), z) -> :'(x, :(z, i(y)))
:(x, x) -> e
:(x, e) -> x
:(:(x, y), z) -> :(x, :(z, i(y)))
:(e, x) -> i(x)
:(x, :(y, i(x))) -> i(y)
:(x, :(y, :(i(x), z))) -> :(i(z), y)
:(i(x), :(y, x)) -> i(y)
:(i(x), :(y, :(x, z))) -> :(i(z), y)
i(:(x, y)) -> :(y, x)
i(i(x)) -> x
i(e) -> e
innermost
six new Dependency Pairs are created:
:'(:(x, y), z) -> :'(x, :(z, i(y)))
:'(:(x, y'), i(y')) -> :'(x, e)
:'(:(x, y0), :(x'', y'')) -> :'(x, :(x'', :(i(y0), i(y''))))
:'(:(x, y'), e) -> :'(x, i(i(y')))
:'(:(x, :(x'', y'')), z) -> :'(x, :(z, :(y'', x'')))
:'(:(x, i(x'')), z) -> :'(x, :(z, x''))
:'(:(x, e), z) -> :'(x, :(z, e))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
:'(:(x, y'), e) -> :'(x, i(i(y')))
:'(:(x, y0), :(x'', y'')) -> :'(x, :(x'', :(i(y0), i(y''))))
:'(:(x, i(x'')), z) -> :'(x, :(z, x''))
:'(i(x), :(y, :(x, z))) -> :'(i(z), y)
:'(x, :(y, :(i(x), z))) -> I(z)
:'(:(x, :(x'', y'')), z) -> :'(x, :(z, :(y'', x'')))
:'(x, :(y, :(i(x), z))) -> :'(i(z), y)
:'(e, x) -> I(x)
:'(:(x, y), z) -> I(y)
:'(:(x, y), z) -> :'(z, i(y))
I(:(x, y)) -> :'(y, x)
:'(i(x), :(y, :(x, z))) -> I(z)
:(x, x) -> e
:(x, e) -> x
:(:(x, y), z) -> :(x, :(z, i(y)))
:(e, x) -> i(x)
:(x, :(y, i(x))) -> i(y)
:(x, :(y, :(i(x), z))) -> :(i(z), y)
:(i(x), :(y, x)) -> i(y)
:(i(x), :(y, :(x, z))) -> :(i(z), y)
i(:(x, y)) -> :(y, x)
i(i(x)) -> x
i(e) -> e
innermost
three new Dependency Pairs are created:
:'(x, :(y, :(i(x), z))) -> :'(i(z), y)
:'(x, :(y, :(i(x), :(x'', y'')))) -> :'(:(y'', x''), y)
:'(x, :(y, :(i(x), i(x'')))) -> :'(x'', y)
:'(x, :(y, :(i(x), e))) -> :'(e, y)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Narrowing Transformation
:'(:(x, y0), :(x'', y'')) -> :'(x, :(x'', :(i(y0), i(y''))))
:'(:(x, i(x'')), z) -> :'(x, :(z, x''))
:'(x, :(y, :(i(x), :(x'', y'')))) -> :'(:(y'', x''), y)
:'(i(x), :(y, :(x, z))) -> I(z)
:'(:(x, :(x'', y'')), z) -> :'(x, :(z, :(y'', x'')))
:'(i(x), :(y, :(x, z))) -> :'(i(z), y)
:'(e, x) -> I(x)
:'(:(x, y), z) -> I(y)
:'(:(x, y), z) -> :'(z, i(y))
I(:(x, y)) -> :'(y, x)
:'(x, :(y, :(i(x), z))) -> I(z)
:'(:(x, y'), e) -> :'(x, i(i(y')))
:(x, x) -> e
:(x, e) -> x
:(:(x, y), z) -> :(x, :(z, i(y)))
:(e, x) -> i(x)
:(x, :(y, i(x))) -> i(y)
:(x, :(y, :(i(x), z))) -> :(i(z), y)
:(i(x), :(y, x)) -> i(y)
:(i(x), :(y, :(x, z))) -> :(i(z), y)
i(:(x, y)) -> :(y, x)
i(i(x)) -> x
i(e) -> e
innermost
three new Dependency Pairs are created:
:'(i(x), :(y, :(x, z))) -> :'(i(z), y)
:'(i(x), :(y, :(x, :(x'', y'')))) -> :'(:(y'', x''), y)
:'(i(x), :(y, :(x, i(x'')))) -> :'(x'', y)
:'(i(x), :(y, :(x, e))) -> :'(e, y)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Remaining Obligation(s)
:'(:(x, i(x'')), z) -> :'(x, :(z, x''))
:'(i(x), :(y, :(x, :(x'', y'')))) -> :'(:(y'', x''), y)
:'(:(x, :(x'', y'')), z) -> :'(x, :(z, :(y'', x'')))
:'(x, :(y, :(i(x), :(x'', y'')))) -> :'(:(y'', x''), y)
:'(:(x, y'), e) -> :'(x, i(i(y')))
:'(i(x), :(y, :(x, z))) -> I(z)
:'(e, x) -> I(x)
:'(:(x, y), z) -> I(y)
:'(:(x, y), z) -> :'(z, i(y))
I(:(x, y)) -> :'(y, x)
:'(x, :(y, :(i(x), z))) -> I(z)
:'(:(x, y0), :(x'', y'')) -> :'(x, :(x'', :(i(y0), i(y''))))
:(x, x) -> e
:(x, e) -> x
:(:(x, y), z) -> :(x, :(z, i(y)))
:(e, x) -> i(x)
:(x, :(y, i(x))) -> i(y)
:(x, :(y, :(i(x), z))) -> :(i(z), y)
:(i(x), :(y, x)) -> i(y)
:(i(x), :(y, :(x, z))) -> :(i(z), y)
i(:(x, y)) -> :(y, x)
i(i(x)) -> x
i(e) -> e
innermost