R
↳Dependency Pair Analysis
+'(*(x, y), *(x, z)) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
+'(*(x, y), +(*(x, z), u)) -> +'(*(x, +(y, z)), u)
+'(*(x, y), +(*(x, z), u)) -> +'(y, z)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
+'(+(x, y), z) -> +'(y, z)
+'(*(x, y), +(*(x, z), u)) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(*(x, y), *(x, z)) -> +'(y, z)
+(*(x, y), *(x, z)) -> *(x, +(y, z))
+(+(x, y), z) -> +(x, +(y, z))
+(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u)
innermost
three new Dependency Pairs are created:
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, *(x'', y'')), *(x'', z'')) -> +'(x, *(x'', +(y'', z'')))
+'(+(x, +(x'', y'')), z'') -> +'(x, +(x'', +(y'', z'')))
+'(+(x, *(x'', y'')), +(*(x'', z''), u)) -> +'(x, +(*(x'', +(y'', z'')), u))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
+'(+(x, *(x'', y'')), +(*(x'', z''), u)) -> +'(x, +(*(x'', +(y'', z'')), u))
+'(+(x, +(x'', y'')), z'') -> +'(x, +(x'', +(y'', z'')))
+'(*(x, y), +(*(x, z), u)) -> +'(y, z)
+'(*(x, y), *(x, z)) -> +'(y, z)
+'(+(x, y), z) -> +'(y, z)
+(*(x, y), *(x, z)) -> *(x, +(y, z))
+(+(x, y), z) -> +(x, +(y, z))
+(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u)
innermost