Term Rewriting System R:
[x, y, z]
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(O(x), O(y)) -> O'(+(x, y))
+'(O(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(I(x), O(y)) -> +'(x, y)
+'(I(x), I(y)) -> O'(+(+(x, y), I(0)))
+'(I(x), I(y)) -> +'(+(x, y), I(0))
+'(I(x), I(y)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
-'(O(x), O(y)) -> O'(-(x, y))
-'(O(x), O(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(-(x, y), I(1))
-'(O(x), I(y)) -> -'(x, y)
-'(I(x), O(y)) -> -'(x, y)
-'(I(x), I(y)) -> O'(-(x, y))
-'(I(x), I(y)) -> -'(x, y)
GE(O(x), O(y)) -> GE(x, y)
GE(O(x), I(y)) -> NOT(ge(y, x))
GE(O(x), I(y)) -> GE(y, x)
GE(I(x), O(y)) -> GE(x, y)
GE(I(x), I(y)) -> GE(x, y)
GE(0, O(x)) -> GE(0, x)
LOG'(I(x)) -> +'(Log'(x), I(0))
LOG'(I(x)) -> LOG'(x)
LOG'(O(x)) -> IF(ge(x, I(0)), +(Log'(x), I(0)), 0)
LOG'(O(x)) -> GE(x, I(0))
LOG'(O(x)) -> +'(Log'(x), I(0))
LOG'(O(x)) -> LOG'(x)
LOG(x) -> -'(Log'(x), I(0))
LOG(x) -> LOG'(x)
MIN(N(x, l, r)) -> MIN(l)
MAX(N(x, l, r)) -> MAX(r)
BS'(N(x, l, r)) -> AND(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
BS'(N(x, l, r)) -> AND(ge(x, Max(l)), ge(Min(r), x))
BS'(N(x, l, r)) -> GE(x, Max(l))
BS'(N(x, l, r)) -> MAX(l)
BS'(N(x, l, r)) -> GE(Min(r), x)
BS'(N(x, l, r)) -> MIN(r)
BS'(N(x, l, r)) -> AND(BS(l), BS(r))
BS'(N(x, l, r)) -> BS'(l)
BS'(N(x, l, r)) -> BS'(r)
SIZE(N(x, l, r)) -> +'(+(Size(l), Size(r)), I(1))
SIZE(N(x, l, r)) -> +'(Size(l), Size(r))
SIZE(N(x, l, r)) -> SIZE(l)
SIZE(N(x, l, r)) -> SIZE(r)
WB'(N(x, l, r)) -> AND(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
WB'(N(x, l, r)) -> IF(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l))))
WB'(N(x, l, r)) -> GE(Size(l), Size(r))
WB'(N(x, l, r)) -> SIZE(l)
WB'(N(x, l, r)) -> SIZE(r)
WB'(N(x, l, r)) -> GE(I(0), -(Size(l), Size(r)))
WB'(N(x, l, r)) -> -'(Size(l), Size(r))
WB'(N(x, l, r)) -> GE(I(0), -(Size(r), Size(l)))
WB'(N(x, l, r)) -> -'(Size(r), Size(l))
WB'(N(x, l, r)) -> AND(WB(l), WB(r))
WB'(N(x, l, r)) -> WB'(l)
WB'(N(x, l, r)) -> WB'(r)

Furthermore, R contains five SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(I(x), I(y)) -> +'(x, y)
+'(I(x), I(y)) -> +'(+(x, y), I(0))
+'(I(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(O(x), O(y)) -> +'(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

+'(I(x), I(y)) -> +'(x, y)
+'(I(x), I(y)) -> +'(+(x, y), I(0))
+'(I(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(O(x), O(y)) -> +'(x, y)


The following usable rules for innermost w.r.t. to the AFS can be oriented:

+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
O(0) -> 0


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  1 + x1  
  POL(0)=  0  
  POL(O(x1))=  1 + x1  
  POL(+(x1, x2))=  x1 + x2  
  POL(+'(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
O(x1) -> O(x1)
+(x1, x2) -> +(x1, x2)
I(x1) -> I(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 6
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




Using the Dependency Graph the DP problem was split into 1 DP problems.


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 6
DGraph
             ...
               →DP Problem 7
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pair:

+'(x, +(y, z)) -> +'(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

+'(x, +(y, z)) -> +'(x, y)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(+(x1, x2))=  1 + x1 + x2  
  POL(+'(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
+(x1, x2) -> +(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 6
DGraph
             ...
               →DP Problem 8
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pair:


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pairs:

-'(I(x), I(y)) -> -'(x, y)
-'(I(x), O(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(-(x, y), I(1))
-'(O(x), O(y)) -> -'(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

-'(I(x), I(y)) -> -'(x, y)
-'(I(x), O(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(-(x, y), I(1))
-'(O(x), O(y)) -> -'(x, y)


The following usable rules for innermost w.r.t. to the AFS can be oriented:

-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
O(0) -> 0


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  1 + x1  
  POL(-'(x1, x2))=  1 + x1 + x2  
  POL(0)=  0  
  POL(1)=  0  
  POL(O(x1))=  1 + x1  
  POL(-(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
-'(x1, x2) -> -'(x1, x2)
I(x1) -> I(x1)
O(x1) -> O(x1)
-(x1, x2) -> -(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 9
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pair:


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pair:

GE(0, O(x)) -> GE(0, x)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

GE(0, O(x)) -> GE(0, x)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0)=  0  
  POL(GE(x1, x2))=  x1 + x2  
  POL(O(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
GE(x1, x2) -> GE(x1, x2)
O(x1) -> O(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 10
Dependency Graph
       →DP Problem 4
AFS
       →DP Problem 5
AFS


Dependency Pair:


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 5
AFS


Dependency Pairs:

GE(I(x), I(y)) -> GE(x, y)
GE(I(x), O(y)) -> GE(x, y)
GE(O(x), I(y)) -> GE(y, x)
GE(O(x), O(y)) -> GE(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

GE(I(x), O(y)) -> GE(x, y)
GE(O(x), I(y)) -> GE(y, x)
GE(O(x), O(y)) -> GE(x, y)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  x1  
  POL(GE(x1, x2))=  1 + x1 + x2  
  POL(O(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
GE(x1, x2) -> GE(x1, x2)
O(x1) -> O(x1)
I(x1) -> I(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 11
Argument Filtering and Ordering
       →DP Problem 5
AFS


Dependency Pair:

GE(I(x), I(y)) -> GE(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

GE(I(x), I(y)) -> GE(x, y)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  1 + x1  
  POL(GE(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
GE(x1, x2) -> GE(x1, x2)
I(x1) -> I(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 11
AFS
             ...
               →DP Problem 12
Dependency Graph
       →DP Problem 5
AFS


Dependency Pair:


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Argument Filtering and Ordering


Dependency Pairs:

LOG'(O(x)) -> LOG'(x)
LOG'(I(x)) -> LOG'(x)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

LOG'(O(x)) -> LOG'(x)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(LOG'(x1))=  x1  
  POL(I(x1))=  x1  
  POL(O(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
LOG'(x1) -> LOG'(x1)
O(x1) -> O(x1)
I(x1) -> I(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 13
Argument Filtering and Ordering


Dependency Pair:

LOG'(I(x)) -> LOG'(x)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

LOG'(I(x)) -> LOG'(x)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(LOG'(x1))=  x1  
  POL(I(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
LOG'(x1) -> LOG'(x1)
I(x1) -> I(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 13
AFS
             ...
               →DP Problem 14
Dependency Graph


Dependency Pair:


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:02 minutes