R
↳Dependency Pair Analysis
+'(O(x), O(y)) -> O'(+(x, y))
+'(O(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(I(x), O(y)) -> +'(x, y)
+'(I(x), I(y)) -> O'(+(+(x, y), I(0)))
+'(I(x), I(y)) -> +'(+(x, y), I(0))
+'(I(x), I(y)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
-'(O(x), O(y)) -> O'(-(x, y))
-'(O(x), O(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(-(x, y), I(1))
-'(O(x), I(y)) -> -'(x, y)
-'(I(x), O(y)) -> -'(x, y)
-'(I(x), I(y)) -> O'(-(x, y))
-'(I(x), I(y)) -> -'(x, y)
GE(O(x), O(y)) -> GE(x, y)
GE(O(x), I(y)) -> NOT(ge(y, x))
GE(O(x), I(y)) -> GE(y, x)
GE(I(x), O(y)) -> GE(x, y)
GE(I(x), I(y)) -> GE(x, y)
GE(0, O(x)) -> GE(0, x)
LOG'(I(x)) -> +'(Log'(x), I(0))
LOG'(I(x)) -> LOG'(x)
LOG'(O(x)) -> IF(ge(x, I(0)), +(Log'(x), I(0)), 0)
LOG'(O(x)) -> GE(x, I(0))
LOG'(O(x)) -> +'(Log'(x), I(0))
LOG'(O(x)) -> LOG'(x)
LOG(x) -> -'(Log'(x), I(0))
LOG(x) -> LOG'(x)
MIN(N(x, l, r)) -> MIN(l)
MAX(N(x, l, r)) -> MAX(r)
BS'(N(x, l, r)) -> AND(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
BS'(N(x, l, r)) -> AND(ge(x, Max(l)), ge(Min(r), x))
BS'(N(x, l, r)) -> GE(x, Max(l))
BS'(N(x, l, r)) -> MAX(l)
BS'(N(x, l, r)) -> GE(Min(r), x)
BS'(N(x, l, r)) -> MIN(r)
BS'(N(x, l, r)) -> AND(BS(l), BS(r))
BS'(N(x, l, r)) -> BS'(l)
BS'(N(x, l, r)) -> BS'(r)
SIZE(N(x, l, r)) -> +'(+(Size(l), Size(r)), I(1))
SIZE(N(x, l, r)) -> +'(Size(l), Size(r))
SIZE(N(x, l, r)) -> SIZE(l)
SIZE(N(x, l, r)) -> SIZE(r)
WB'(N(x, l, r)) -> AND(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
WB'(N(x, l, r)) -> IF(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l))))
WB'(N(x, l, r)) -> GE(Size(l), Size(r))
WB'(N(x, l, r)) -> SIZE(l)
WB'(N(x, l, r)) -> SIZE(r)
WB'(N(x, l, r)) -> GE(I(0), -(Size(l), Size(r)))
WB'(N(x, l, r)) -> -'(Size(l), Size(r))
WB'(N(x, l, r)) -> GE(I(0), -(Size(r), Size(l)))
WB'(N(x, l, r)) -> -'(Size(r), Size(l))
WB'(N(x, l, r)) -> AND(WB(l), WB(r))
WB'(N(x, l, r)) -> WB'(l)
WB'(N(x, l, r)) -> WB'(r)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(I(x), I(y)) -> +'(x, y)
+'(I(x), I(y)) -> +'(+(x, y), I(0))
+'(I(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(O(x), O(y)) -> +'(x, y)
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(I(x), I(y)) -> +'(x, y)
+'(I(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(O(x), O(y)) -> +'(x, y)
I > 0
O > 0
+ > 0
+' > 0
+'(x1, x2) -> x2
O(x1) -> O(x1)
+(x1, x2) -> +(x1, x2)
I(x1) -> I(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 6
↳Narrowing Transformation
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining
+'(I(x), I(y)) -> +'(+(x, y), I(0))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
seven new Dependency Pairs are created:
+'(I(x), I(y)) -> +'(+(x, y), I(0))
+'(I(0), I(y')) -> +'(y', I(0))
+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(O(x'')), I(O(y''))) -> +'(O(+(x'', y'')), I(0))
+'(I(O(x'')), I(I(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(I(x'')), I(O(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(I(x'')), I(I(y''))) -> +'(O(+(+(x'', y''), I(0))), I(0))
+'(I(x''), I(+(y'', z'))) -> +'(+(+(x'', y''), z'), I(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Instantiation Transformation
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining
+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(0), I(y')) -> +'(y', I(0))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
one new Dependency Pair is created:
+'(I(0), I(y')) -> +'(y', I(0))
+'(I(0), I(0)) -> +'(0, I(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining
+'(I(x''), I(0)) -> +'(x'', I(0))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
one new Dependency Pair is created:
+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(I(x'''')), I(0)) -> +'(I(x''''), I(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining
+'(I(I(x'''')), I(0)) -> +'(I(x''''), I(0))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
+'(I(I(x'''')), I(0)) -> +'(I(x''''), I(0))
trivial
+'(x1, x2) -> +'(x1, x2)
I(x1) -> I(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining
-'(I(x), I(y)) -> -'(x, y)
-'(I(x), O(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(-(x, y), I(1))
-'(O(x), O(y)) -> -'(x, y)
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
-'(I(x), I(y)) -> -'(x, y)
-'(I(x), O(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(-(x, y), I(1))
-'(O(x), O(y)) -> -'(x, y)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
O(0) -> 0
{-', I, O, 1}
-'(x1, x2) -> -'(x1, x2)
I(x1) -> I(x1)
O(x1) -> O(x1)
-(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 11
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining
GE(0, O(x)) -> GE(0, x)
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
GE(0, O(x)) -> GE(0, x)
trivial
GE(x1, x2) -> GE(x1, x2)
O(x1) -> O(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 12
↳Dependency Graph
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 5
↳Remaining
GE(I(x), I(y)) -> GE(x, y)
GE(I(x), O(y)) -> GE(x, y)
GE(O(x), I(y)) -> GE(y, x)
GE(O(x), O(y)) -> GE(x, y)
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
four new Dependency Pairs are created:
GE(O(x), O(y)) -> GE(x, y)
GE(O(O(x'')), O(O(y''))) -> GE(O(x''), O(y''))
GE(O(O(x'')), O(I(y''))) -> GE(O(x''), I(y''))
GE(O(I(x'')), O(O(y''))) -> GE(I(x''), O(y''))
GE(O(I(x'')), O(I(y''))) -> GE(I(x''), I(y''))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 13
↳Forward Instantiation Transformation
→DP Problem 5
↳Remaining
GE(O(I(x'')), O(I(y''))) -> GE(I(x''), I(y''))
GE(O(I(x'')), O(O(y''))) -> GE(I(x''), O(y''))
GE(O(O(x'')), O(I(y''))) -> GE(O(x''), I(y''))
GE(O(O(x'')), O(O(y''))) -> GE(O(x''), O(y''))
GE(I(x), O(y)) -> GE(x, y)
GE(O(x), I(y)) -> GE(y, x)
GE(I(x), I(y)) -> GE(x, y)
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
seven new Dependency Pairs are created:
GE(O(x), I(y)) -> GE(y, x)
GE(O(I(y'')), I(O(x''))) -> GE(O(x''), I(y''))
GE(O(O(y'')), I(I(x''))) -> GE(I(x''), O(y''))
GE(O(I(y'')), I(I(x''))) -> GE(I(x''), I(y''))
GE(O(O(O(y''''))), I(O(O(x'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(O(O(I(y''''))), I(O(O(x'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(O(O(O(y''''))), I(O(I(x'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(O(O(I(y''''))), I(O(I(x'''')))) -> GE(O(I(x'''')), O(I(y'''')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 14
↳Forward Instantiation Transformation
→DP Problem 5
↳Remaining
GE(O(O(I(y''''))), I(O(I(x'''')))) -> GE(O(I(x'''')), O(I(y'''')))
GE(O(I(x'')), O(O(y''))) -> GE(I(x''), O(y''))
GE(O(O(O(y''''))), I(O(I(x'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(O(O(I(y''''))), I(O(O(x'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(O(O(O(y''''))), I(O(O(x'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(O(I(y'')), I(I(x''))) -> GE(I(x''), I(y''))
GE(O(O(y'')), I(I(x''))) -> GE(I(x''), O(y''))
GE(O(I(y'')), I(O(x''))) -> GE(O(x''), I(y''))
GE(O(O(x'')), O(I(y''))) -> GE(O(x''), I(y''))
GE(O(O(x'')), O(O(y''))) -> GE(O(x''), O(y''))
GE(I(x), O(y)) -> GE(x, y)
GE(I(x), I(y)) -> GE(x, y)
GE(O(I(x'')), O(I(y''))) -> GE(I(x''), I(y''))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
13 new Dependency Pairs are created:
GE(I(x), O(y)) -> GE(x, y)
GE(I(I(x'')), O(O(y''))) -> GE(I(x''), O(y''))
GE(I(I(x'')), O(I(y''))) -> GE(I(x''), I(y''))
GE(I(O(O(x''''))), O(O(O(y'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(I(O(O(x''''))), O(O(I(y'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(I(O(I(x''''))), O(O(O(y'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(I(O(I(x''''))), O(O(I(y'''')))) -> GE(O(I(x'''')), O(I(y'''')))
GE(I(O(I(y''''))), O(I(O(x'''')))) -> GE(O(I(y'''')), I(O(x'''')))
GE(I(O(O(y''''))), O(I(I(x'''')))) -> GE(O(O(y'''')), I(I(x'''')))
GE(I(O(I(y''''))), O(I(I(x'''')))) -> GE(O(I(y'''')), I(I(x'''')))
GE(I(O(O(O(y'''''')))), O(I(O(O(x''''''))))) -> GE(O(O(O(y''''''))), I(O(O(x''''''))))
GE(I(O(O(I(y'''''')))), O(I(O(O(x''''''))))) -> GE(O(O(I(y''''''))), I(O(O(x''''''))))
GE(I(O(O(O(y'''''')))), O(I(O(I(x''''''))))) -> GE(O(O(O(y''''''))), I(O(I(x''''''))))
GE(I(O(O(I(y'''''')))), O(I(O(I(x''''''))))) -> GE(O(O(I(y''''''))), I(O(I(x''''''))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 15
↳Forward Instantiation Transformation
→DP Problem 5
↳Remaining
GE(I(O(O(I(y'''''')))), O(I(O(I(x''''''))))) -> GE(O(O(I(y''''''))), I(O(I(x''''''))))
GE(O(O(O(y''''))), I(O(I(x'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(I(O(O(O(y'''''')))), O(I(O(I(x''''''))))) -> GE(O(O(O(y''''''))), I(O(I(x''''''))))
GE(O(O(I(y''''))), I(O(O(x'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(I(O(O(I(y'''''')))), O(I(O(O(x''''''))))) -> GE(O(O(I(y''''''))), I(O(O(x''''''))))
GE(O(O(O(y''''))), I(O(O(x'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(I(O(O(O(y'''''')))), O(I(O(O(x''''''))))) -> GE(O(O(O(y''''''))), I(O(O(x''''''))))
GE(O(I(y'')), I(I(x''))) -> GE(I(x''), I(y''))
GE(I(O(I(y''''))), O(I(I(x'''')))) -> GE(O(I(y'''')), I(I(x'''')))
GE(I(O(O(y''''))), O(I(I(x'''')))) -> GE(O(O(y'''')), I(I(x'''')))
GE(I(O(I(y''''))), O(I(O(x'''')))) -> GE(O(I(y'''')), I(O(x'''')))
GE(I(O(I(x''''))), O(O(I(y'''')))) -> GE(O(I(x'''')), O(I(y'''')))
GE(O(I(x'')), O(O(y''))) -> GE(I(x''), O(y''))
GE(I(O(I(x''''))), O(O(O(y'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(I(O(O(x''''))), O(O(I(y'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(I(O(O(x''''))), O(O(O(y'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(I(I(x'')), O(I(y''))) -> GE(I(x''), I(y''))
GE(I(I(x'')), O(O(y''))) -> GE(I(x''), O(y''))
GE(O(O(y'')), I(I(x''))) -> GE(I(x''), O(y''))
GE(O(I(y'')), I(O(x''))) -> GE(O(x''), I(y''))
GE(O(O(x'')), O(I(y''))) -> GE(O(x''), I(y''))
GE(O(O(x'')), O(O(y''))) -> GE(O(x''), O(y''))
GE(I(x), I(y)) -> GE(x, y)
GE(O(I(x'')), O(I(y''))) -> GE(I(x''), I(y''))
GE(O(O(I(y''''))), I(O(I(x'''')))) -> GE(O(I(x'''')), O(I(y'''')))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
25 new Dependency Pairs are created:
GE(I(x), I(y)) -> GE(x, y)
GE(I(I(x'')), I(I(y''))) -> GE(I(x''), I(y''))
GE(I(O(O(x''''))), I(O(O(y'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(I(O(O(x''''))), I(O(I(y'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(I(O(I(x''''))), I(O(O(y'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(I(O(I(x''''))), I(O(I(y'''')))) -> GE(O(I(x'''')), O(I(y'''')))
GE(I(O(I(y''''))), I(I(O(x'''')))) -> GE(O(I(y'''')), I(O(x'''')))
GE(I(O(O(y''''))), I(I(I(x'''')))) -> GE(O(O(y'''')), I(I(x'''')))
GE(I(O(I(y''''))), I(I(I(x'''')))) -> GE(O(I(y'''')), I(I(x'''')))
GE(I(O(O(O(y'''''')))), I(I(O(O(x''''''))))) -> GE(O(O(O(y''''''))), I(O(O(x''''''))))
GE(I(O(O(I(y'''''')))), I(I(O(O(x''''''))))) -> GE(O(O(I(y''''''))), I(O(O(x''''''))))
GE(I(O(O(O(y'''''')))), I(I(O(I(x''''''))))) -> GE(O(O(O(y''''''))), I(O(I(x''''''))))
GE(I(O(O(I(y'''''')))), I(I(O(I(x''''''))))) -> GE(O(O(I(y''''''))), I(O(I(x''''''))))
GE(I(I(I(x''''))), I(O(O(y'''')))) -> GE(I(I(x'''')), O(O(y'''')))
GE(I(I(I(x''''))), I(O(I(y'''')))) -> GE(I(I(x'''')), O(I(y'''')))
GE(I(I(O(O(x'''''')))), I(O(O(O(y''''''))))) -> GE(I(O(O(x''''''))), O(O(O(y''''''))))
GE(I(I(O(O(x'''''')))), I(O(O(I(y''''''))))) -> GE(I(O(O(x''''''))), O(O(I(y''''''))))
GE(I(I(O(I(x'''''')))), I(O(O(O(y''''''))))) -> GE(I(O(I(x''''''))), O(O(O(y''''''))))
GE(I(I(O(I(x'''''')))), I(O(O(I(y''''''))))) -> GE(I(O(I(x''''''))), O(O(I(y''''''))))
GE(I(I(O(I(y'''''')))), I(O(I(O(x''''''))))) -> GE(I(O(I(y''''''))), O(I(O(x''''''))))
GE(I(I(O(O(y'''''')))), I(O(I(I(x''''''))))) -> GE(I(O(O(y''''''))), O(I(I(x''''''))))
GE(I(I(O(I(y'''''')))), I(O(I(I(x''''''))))) -> GE(I(O(I(y''''''))), O(I(I(x''''''))))
GE(I(I(O(O(O(y''''''''))))), I(O(I(O(O(x'''''''')))))) -> GE(I(O(O(O(y'''''''')))), O(I(O(O(x'''''''')))))
GE(I(I(O(O(I(y''''''''))))), I(O(I(O(O(x'''''''')))))) -> GE(I(O(O(I(y'''''''')))), O(I(O(O(x'''''''')))))
GE(I(I(O(O(O(y''''''''))))), I(O(I(O(I(x'''''''')))))) -> GE(I(O(O(O(y'''''''')))), O(I(O(I(x'''''''')))))
GE(I(I(O(O(I(y''''''''))))), I(O(I(O(I(x'''''''')))))) -> GE(I(O(O(I(y'''''''')))), O(I(O(I(x'''''''')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining Obligation(s)
GE(I(I(O(O(I(y''''''''))))), I(O(I(O(I(x'''''''')))))) -> GE(I(O(O(I(y'''''''')))), O(I(O(I(x'''''''')))))
GE(I(O(O(O(y'''''')))), O(I(O(I(x''''''))))) -> GE(O(O(O(y''''''))), I(O(I(x''''''))))
GE(I(I(O(O(O(y''''''''))))), I(O(I(O(I(x'''''''')))))) -> GE(I(O(O(O(y'''''''')))), O(I(O(I(x'''''''')))))
GE(I(O(O(I(y'''''')))), O(I(O(O(x''''''))))) -> GE(O(O(I(y''''''))), I(O(O(x''''''))))
GE(I(I(O(O(I(y''''''''))))), I(O(I(O(O(x'''''''')))))) -> GE(I(O(O(I(y'''''''')))), O(I(O(O(x'''''''')))))
GE(I(O(O(O(y'''''')))), O(I(O(O(x''''''))))) -> GE(O(O(O(y''''''))), I(O(O(x''''''))))
GE(I(I(O(O(O(y''''''''))))), I(O(I(O(O(x'''''''')))))) -> GE(I(O(O(O(y'''''''')))), O(I(O(O(x'''''''')))))
GE(I(I(O(I(y'''''')))), I(O(I(I(x''''''))))) -> GE(I(O(I(y''''''))), O(I(I(x''''''))))
GE(I(I(O(O(y'''''')))), I(O(I(I(x''''''))))) -> GE(I(O(O(y''''''))), O(I(I(x''''''))))
GE(I(I(O(I(y'''''')))), I(O(I(O(x''''''))))) -> GE(I(O(I(y''''''))), O(I(O(x''''''))))
GE(I(I(O(I(x'''''')))), I(O(O(I(y''''''))))) -> GE(I(O(I(x''''''))), O(O(I(y''''''))))
GE(I(I(O(I(x'''''')))), I(O(O(O(y''''''))))) -> GE(I(O(I(x''''''))), O(O(O(y''''''))))
GE(I(I(O(O(x'''''')))), I(O(O(I(y''''''))))) -> GE(I(O(O(x''''''))), O(O(I(y''''''))))
GE(I(I(O(O(x'''''')))), I(O(O(O(y''''''))))) -> GE(I(O(O(x''''''))), O(O(O(y''''''))))
GE(I(I(I(x''''))), I(O(I(y'''')))) -> GE(I(I(x'''')), O(I(y'''')))
GE(I(I(I(x''''))), I(O(O(y'''')))) -> GE(I(I(x'''')), O(O(y'''')))
GE(I(O(O(I(y'''''')))), I(I(O(I(x''''''))))) -> GE(O(O(I(y''''''))), I(O(I(x''''''))))
GE(O(O(O(y''''))), I(O(I(x'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(I(O(O(O(y'''''')))), I(I(O(I(x''''''))))) -> GE(O(O(O(y''''''))), I(O(I(x''''''))))
GE(O(O(I(y''''))), I(O(O(x'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(I(O(O(I(y'''''')))), I(I(O(O(x''''''))))) -> GE(O(O(I(y''''''))), I(O(O(x''''''))))
GE(O(O(O(y''''))), I(O(O(x'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(I(O(O(O(y'''''')))), I(I(O(O(x''''''))))) -> GE(O(O(O(y''''''))), I(O(O(x''''''))))
GE(I(O(I(y''''))), I(I(I(x'''')))) -> GE(O(I(y'''')), I(I(x'''')))
GE(I(O(O(y''''))), I(I(I(x'''')))) -> GE(O(O(y'''')), I(I(x'''')))
GE(I(O(I(y''''))), I(I(O(x'''')))) -> GE(O(I(y'''')), I(O(x'''')))
GE(I(O(I(x''''))), I(O(I(y'''')))) -> GE(O(I(x'''')), O(I(y'''')))
GE(O(I(y'')), I(I(x''))) -> GE(I(x''), I(y''))
GE(I(O(I(y''''))), O(I(I(x'''')))) -> GE(O(I(y'''')), I(I(x'''')))
GE(I(O(O(y''''))), O(I(I(x'''')))) -> GE(O(O(y'''')), I(I(x'''')))
GE(I(O(I(y''''))), O(I(O(x'''')))) -> GE(O(I(y'''')), I(O(x'''')))
GE(I(O(I(x''''))), O(O(I(y'''')))) -> GE(O(I(x'''')), O(I(y'''')))
GE(I(O(I(x''''))), O(O(O(y'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(I(O(O(x''''))), O(O(I(y'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(I(O(O(x''''))), O(O(O(y'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(O(I(x'')), O(O(y''))) -> GE(I(x''), O(y''))
GE(I(O(I(x''''))), I(O(O(y'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(I(O(O(x''''))), I(O(I(y'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(I(I(x'')), O(I(y''))) -> GE(I(x''), I(y''))
GE(I(I(x'')), O(O(y''))) -> GE(I(x''), O(y''))
GE(O(O(y'')), I(I(x''))) -> GE(I(x''), O(y''))
GE(O(I(y'')), I(O(x''))) -> GE(O(x''), I(y''))
GE(O(O(x'')), O(I(y''))) -> GE(O(x''), I(y''))
GE(O(O(x'')), O(O(y''))) -> GE(O(x''), O(y''))
GE(I(O(O(x''''))), I(O(O(y'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(I(I(x'')), I(I(y''))) -> GE(I(x''), I(y''))
GE(O(I(x'')), O(I(y''))) -> GE(I(x''), I(y''))
GE(O(O(I(y''''))), I(O(I(x'''')))) -> GE(O(I(x'''')), O(I(y'''')))
GE(I(O(O(I(y'''''')))), O(I(O(I(x''''''))))) -> GE(O(O(I(y''''''))), I(O(I(x''''''))))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
LOG'(O(x)) -> LOG'(x)
LOG'(I(x)) -> LOG'(x)
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Remaining Obligation(s)
GE(I(I(O(O(I(y''''''''))))), I(O(I(O(I(x'''''''')))))) -> GE(I(O(O(I(y'''''''')))), O(I(O(I(x'''''''')))))
GE(I(O(O(O(y'''''')))), O(I(O(I(x''''''))))) -> GE(O(O(O(y''''''))), I(O(I(x''''''))))
GE(I(I(O(O(O(y''''''''))))), I(O(I(O(I(x'''''''')))))) -> GE(I(O(O(O(y'''''''')))), O(I(O(I(x'''''''')))))
GE(I(O(O(I(y'''''')))), O(I(O(O(x''''''))))) -> GE(O(O(I(y''''''))), I(O(O(x''''''))))
GE(I(I(O(O(I(y''''''''))))), I(O(I(O(O(x'''''''')))))) -> GE(I(O(O(I(y'''''''')))), O(I(O(O(x'''''''')))))
GE(I(O(O(O(y'''''')))), O(I(O(O(x''''''))))) -> GE(O(O(O(y''''''))), I(O(O(x''''''))))
GE(I(I(O(O(O(y''''''''))))), I(O(I(O(O(x'''''''')))))) -> GE(I(O(O(O(y'''''''')))), O(I(O(O(x'''''''')))))
GE(I(I(O(I(y'''''')))), I(O(I(I(x''''''))))) -> GE(I(O(I(y''''''))), O(I(I(x''''''))))
GE(I(I(O(O(y'''''')))), I(O(I(I(x''''''))))) -> GE(I(O(O(y''''''))), O(I(I(x''''''))))
GE(I(I(O(I(y'''''')))), I(O(I(O(x''''''))))) -> GE(I(O(I(y''''''))), O(I(O(x''''''))))
GE(I(I(O(I(x'''''')))), I(O(O(I(y''''''))))) -> GE(I(O(I(x''''''))), O(O(I(y''''''))))
GE(I(I(O(I(x'''''')))), I(O(O(O(y''''''))))) -> GE(I(O(I(x''''''))), O(O(O(y''''''))))
GE(I(I(O(O(x'''''')))), I(O(O(I(y''''''))))) -> GE(I(O(O(x''''''))), O(O(I(y''''''))))
GE(I(I(O(O(x'''''')))), I(O(O(O(y''''''))))) -> GE(I(O(O(x''''''))), O(O(O(y''''''))))
GE(I(I(I(x''''))), I(O(I(y'''')))) -> GE(I(I(x'''')), O(I(y'''')))
GE(I(I(I(x''''))), I(O(O(y'''')))) -> GE(I(I(x'''')), O(O(y'''')))
GE(I(O(O(I(y'''''')))), I(I(O(I(x''''''))))) -> GE(O(O(I(y''''''))), I(O(I(x''''''))))
GE(O(O(O(y''''))), I(O(I(x'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(I(O(O(O(y'''''')))), I(I(O(I(x''''''))))) -> GE(O(O(O(y''''''))), I(O(I(x''''''))))
GE(O(O(I(y''''))), I(O(O(x'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(I(O(O(I(y'''''')))), I(I(O(O(x''''''))))) -> GE(O(O(I(y''''''))), I(O(O(x''''''))))
GE(O(O(O(y''''))), I(O(O(x'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(I(O(O(O(y'''''')))), I(I(O(O(x''''''))))) -> GE(O(O(O(y''''''))), I(O(O(x''''''))))
GE(I(O(I(y''''))), I(I(I(x'''')))) -> GE(O(I(y'''')), I(I(x'''')))
GE(I(O(O(y''''))), I(I(I(x'''')))) -> GE(O(O(y'''')), I(I(x'''')))
GE(I(O(I(y''''))), I(I(O(x'''')))) -> GE(O(I(y'''')), I(O(x'''')))
GE(I(O(I(x''''))), I(O(I(y'''')))) -> GE(O(I(x'''')), O(I(y'''')))
GE(O(I(y'')), I(I(x''))) -> GE(I(x''), I(y''))
GE(I(O(I(y''''))), O(I(I(x'''')))) -> GE(O(I(y'''')), I(I(x'''')))
GE(I(O(O(y''''))), O(I(I(x'''')))) -> GE(O(O(y'''')), I(I(x'''')))
GE(I(O(I(y''''))), O(I(O(x'''')))) -> GE(O(I(y'''')), I(O(x'''')))
GE(I(O(I(x''''))), O(O(I(y'''')))) -> GE(O(I(x'''')), O(I(y'''')))
GE(I(O(I(x''''))), O(O(O(y'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(I(O(O(x''''))), O(O(I(y'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(I(O(O(x''''))), O(O(O(y'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(O(I(x'')), O(O(y''))) -> GE(I(x''), O(y''))
GE(I(O(I(x''''))), I(O(O(y'''')))) -> GE(O(I(x'''')), O(O(y'''')))
GE(I(O(O(x''''))), I(O(I(y'''')))) -> GE(O(O(x'''')), O(I(y'''')))
GE(I(I(x'')), O(I(y''))) -> GE(I(x''), I(y''))
GE(I(I(x'')), O(O(y''))) -> GE(I(x''), O(y''))
GE(O(O(y'')), I(I(x''))) -> GE(I(x''), O(y''))
GE(O(I(y'')), I(O(x''))) -> GE(O(x''), I(y''))
GE(O(O(x'')), O(I(y''))) -> GE(O(x''), I(y''))
GE(O(O(x'')), O(O(y''))) -> GE(O(x''), O(y''))
GE(I(O(O(x''''))), I(O(O(y'''')))) -> GE(O(O(x'''')), O(O(y'''')))
GE(I(I(x'')), I(I(y''))) -> GE(I(x''), I(y''))
GE(O(I(x'')), O(I(y''))) -> GE(I(x''), I(y''))
GE(O(O(I(y''''))), I(O(I(x'''')))) -> GE(O(I(x'''')), O(I(y'''')))
GE(I(O(O(I(y'''''')))), O(I(O(I(x''''''))))) -> GE(O(O(I(y''''''))), I(O(I(x''''''))))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost
LOG'(O(x)) -> LOG'(x)
LOG'(I(x)) -> LOG'(x)
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
innermost