R
↳Dependency Pair Analysis
+'(O(x), O(y)) -> O'(+(x, y))
+'(O(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(I(x), O(y)) -> +'(x, y)
+'(I(x), I(y)) -> O'(+(+(x, y), I(0)))
+'(I(x), I(y)) -> +'(+(x, y), I(0))
+'(I(x), I(y)) -> +'(x, y)
*'(O(x), y) -> O'(*(x, y))
*'(O(x), y) -> *'(x, y)
*'(I(x), y) -> +'(O(*(x, y)), y)
*'(I(x), y) -> O'(*(x, y))
*'(I(x), y) -> *'(x, y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
+'(I(x), I(y)) -> +'(x, y)
+'(I(x), I(y)) -> +'(+(x, y), I(0))
+'(I(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(O(x), O(y)) -> +'(x, y)
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
*(0, x) -> 0
*(x, 0) -> 0
*(O(x), y) -> O(*(x, y))
*(I(x), y) -> +(O(*(x, y)), y)
innermost
+'(I(x), I(y)) -> +'(x, y)
+'(I(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(O(x), O(y)) -> +'(x, y)
I > 0
O > 0
+ > 0
+' > 0
+'(x1, x2) -> x2
O(x1) -> O(x1)
I(x1) -> I(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Narrowing Transformation
→DP Problem 2
↳AFS
+'(I(x), I(y)) -> +'(+(x, y), I(0))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
*(0, x) -> 0
*(x, 0) -> 0
*(O(x), y) -> O(*(x, y))
*(I(x), y) -> +(O(*(x, y)), y)
innermost
six new Dependency Pairs are created:
+'(I(x), I(y)) -> +'(+(x, y), I(0))
+'(I(0), I(y')) -> +'(y', I(0))
+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(O(x'')), I(O(y''))) -> +'(O(+(x'', y'')), I(0))
+'(I(O(x'')), I(I(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(I(x'')), I(O(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(I(x'')), I(I(y''))) -> +'(O(+(+(x'', y''), I(0))), I(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Nar
...
→DP Problem 4
↳Instantiation Transformation
→DP Problem 2
↳AFS
+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(0), I(y')) -> +'(y', I(0))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
*(0, x) -> 0
*(x, 0) -> 0
*(O(x), y) -> O(*(x, y))
*(I(x), y) -> +(O(*(x, y)), y)
innermost
one new Dependency Pair is created:
+'(I(0), I(y')) -> +'(y', I(0))
+'(I(0), I(0)) -> +'(0, I(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Nar
...
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳AFS
+'(I(x''), I(0)) -> +'(x'', I(0))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
*(0, x) -> 0
*(x, 0) -> 0
*(O(x), y) -> O(*(x, y))
*(I(x), y) -> +(O(*(x, y)), y)
innermost
one new Dependency Pair is created:
+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(I(x'''')), I(0)) -> +'(I(x''''), I(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Nar
...
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
+'(I(I(x'''')), I(0)) -> +'(I(x''''), I(0))
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
*(0, x) -> 0
*(x, 0) -> 0
*(O(x), y) -> O(*(x, y))
*(I(x), y) -> +(O(*(x, y)), y)
innermost
+'(I(I(x'''')), I(0)) -> +'(I(x''''), I(0))
trivial
+'(x1, x2) -> +'(x1, x2)
I(x1) -> I(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Nar
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳AFS
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
*(0, x) -> 0
*(x, 0) -> 0
*(O(x), y) -> O(*(x, y))
*(I(x), y) -> +(O(*(x, y)), y)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
*'(I(x), y) -> *'(x, y)
*'(O(x), y) -> *'(x, y)
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
*(0, x) -> 0
*(x, 0) -> 0
*(O(x), y) -> O(*(x, y))
*(I(x), y) -> +(O(*(x, y)), y)
innermost
*'(I(x), y) -> *'(x, y)
*'(O(x), y) -> *'(x, y)
trivial
*'(x1, x2) -> *'(x1, x2)
I(x1) -> I(x1)
O(x1) -> O(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 8
↳Dependency Graph
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
*(0, x) -> 0
*(x, 0) -> 0
*(O(x), y) -> O(*(x, y))
*(I(x), y) -> +(O(*(x, y)), y)
innermost