R
↳Dependency Pair Analysis
F(0, 1, x) -> F(h(x), h(x), x)
F(0, 1, x) -> H(x)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
F(0, 1, x) -> F(h(x), h(x), x)
f(0, 1, x) -> f(h(x), h(x), x)
h(0) -> 0
h(g(x, y)) -> y
innermost
four new Dependency Pairs are created:
F(0, 1, x) -> F(h(x), h(x), x)
F(0, 1, 0) -> F(0, h(0), 0)
F(0, 1, g(x'', y')) -> F(y', h(g(x'', y')), g(x'', y'))
F(0, 1, 0) -> F(h(0), 0, 0)
F(0, 1, g(x'', y')) -> F(h(g(x'', y')), y', g(x'', y'))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rewriting Transformation
→DP Problem 3
↳Rw
F(0, 1, 0) -> F(0, h(0), 0)
f(0, 1, x) -> f(h(x), h(x), x)
h(0) -> 0
h(g(x, y)) -> y
innermost
one new Dependency Pair is created:
F(0, 1, 0) -> F(0, h(0), 0)
F(0, 1, 0) -> F(0, 0, 0)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
→DP Problem 3
↳Rewriting Transformation
F(0, 1, g(x'', y')) -> F(h(g(x'', y')), y', g(x'', y'))
F(0, 1, g(x'', y')) -> F(y', h(g(x'', y')), g(x'', y'))
f(0, 1, x) -> f(h(x), h(x), x)
h(0) -> 0
h(g(x, y)) -> y
innermost
one new Dependency Pair is created:
F(0, 1, g(x'', y')) -> F(y', h(g(x'', y')), g(x'', y'))
F(0, 1, g(x'', y')) -> F(y', y', g(x'', y'))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
→DP Problem 3
↳Rw
...
→DP Problem 4
↳Rewriting Transformation
F(0, 1, g(x'', y')) -> F(h(g(x'', y')), y', g(x'', y'))
f(0, 1, x) -> f(h(x), h(x), x)
h(0) -> 0
h(g(x, y)) -> y
innermost
one new Dependency Pair is created:
F(0, 1, g(x'', y')) -> F(h(g(x'', y')), y', g(x'', y'))
F(0, 1, g(x'', y')) -> F(y', y', g(x'', y'))