Term Rewriting System R:
[x, y, z, x1, x2, x3, x4]
f1 -> g1
f1 -> g2
f2 -> g1
f2 -> g2
g1 -> h1
g1 -> h2
g2 -> h1
g2 -> h2
h1 -> i
h2 -> i
e1(h1, h2, x, y, z) -> e2(x, x, y, z, z)
e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
e2(f1, x, y, z, f2) -> e3(x, y, x, y, y, z, y, z, x, y, z)
e2(x, x, y, z, z) -> e6(x, y, z)
e2(i, x, y, z, i) -> e6(x, y, z)
e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
e4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) -> e1(x1, x1, x, y, z)
e4(i, x1, i, x1, i, x1, i, x1, x, y, z) -> e5(x1, x, y, z)
e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)
e5(i, x, y, z) -> e6(x, y, z)

Innermost Termination of R to be shown.



   R
Removing Redundant Rules for Innermost Termination



Removing the following rules from R which left hand sides contain non normal subterms

e1(h1, h2, x, y, z) -> e2(x, x, y, z, z)
e2(f1, x, y, z, f2) -> e3(x, y, x, y, y, z, y, z, x, y, z)
e4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) -> e1(x1, x1, x, y, z)


   R
RRRI
       →TRS2
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

f1 -> g1
f1 -> g2

where the Polynomial interpretation:
  POL(f2)=  0  
  POL(i)=  0  
  POL(h1)=  0  
  POL(e1(x1, x2, x3, x4, x5))=  x1 + x2 + x3 + x4 + x5  
  POL(e6(x1, x2, x3))=  x1 + x2 + x3  
  POL(f1)=  1  
  POL(h2)=  0  
  POL(g1)=  0  
  POL(e5(x1, x2, x3, x4))=  x1 + x2 + x3 + x4  
  POL(e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(g2)=  0  
  POL(e2(x1, x2, x3, x4, x5))=  x1 + x2 + x3 + x4 + x5  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

f2 -> g1
f2 -> g2

where the Polynomial interpretation:
  POL(f2)=  1  
  POL(i)=  0  
  POL(h1)=  0  
  POL(e6(x1, x2, x3))=  x1 + x2 + x3  
  POL(e1(x1, x2, x3, x4, x5))=  x1 + x2 + x3 + x4 + x5  
  POL(e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(g2)=  0  
  POL(h2)=  0  
  POL(g1)=  0  
  POL(e5(x1, x2, x3, x4))=  x1 + x2 + x3 + x4  
  POL(e2(x1, x2, x3, x4, x5))=  x1 + x2 + x3 + x4 + x5  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS4
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

h1 -> i
g1 -> h2
g2 -> h2

where the Polynomial interpretation:
  POL(i)=  0  
  POL(e6(x1, x2, x3))=  x1 + x2 + x3  
  POL(e1(x1, x2, x3, x4, x5))=  x1 + x2 + x3 + x4 + x5  
  POL(h1)=  1  
  POL(e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(g2)=  1  
  POL(h2)=  0  
  POL(g1)=  1  
  POL(e2(x1, x2, x3, x4, x5))=  x1 + x2 + x3 + x4 + x5  
  POL(e5(x1, x2, x3, x4))=  x1 + x2 + x3 + x4  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS5
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)

where the Polynomial interpretation:
  POL(i)=  0  
  POL(e6(x1, x2, x3))=  x1 + x2 + x3  
  POL(e1(x1, x2, x3, x4, x5))=  x1 + x2 + x3 + x4 + x5  
  POL(h1)=  0  
  POL(e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  1 + x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(g2)=  0  
  POL(h2)=  0  
  POL(g1)=  0  
  POL(e5(x1, x2, x3, x4))=  x1 + x2 + x3 + x4  
  POL(e2(x1, x2, x3, x4, x5))=  x1 + x2 + x3 + x4 + x5  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS6
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

e1(x1, x1, x, y, z) -> e5(x1, x, y, z)

where the Polynomial interpretation:
  POL(i)=  0  
  POL(e6(x1, x2, x3))=  x1 + x2 + x3  
  POL(h1)=  0  
  POL(e1(x1, x2, x3, x4, x5))=  1 + x1 + x2 + x3 + x4 + x5  
  POL(e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(g2)=  0  
  POL(h2)=  0  
  POL(g1)=  0  
  POL(e5(x1, x2, x3, x4))=  x1 + x2 + x3 + x4  
  POL(e2(x1, x2, x3, x4, x5))=  x1 + x2 + x3 + x4 + x5  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS7
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

e2(i, x, y, z, i) -> e6(x, y, z)
e2(x, x, y, z, z) -> e6(x, y, z)

where the Polynomial interpretation:
  POL(i)=  0  
  POL(e6(x1, x2, x3))=  x1 + x2 + x3  
  POL(h1)=  0  
  POL(e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(g2)=  0  
  POL(h2)=  0  
  POL(g1)=  0  
  POL(e2(x1, x2, x3, x4, x5))=  1 + x1 + x2 + x3 + x4 + x5  
  POL(e5(x1, x2, x3, x4))=  x1 + x2 + x3 + x4  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS8
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

h2 -> i

where the Polynomial interpretation:
  POL(i)=  0  
  POL(e6(x1, x2, x3))=  x1 + x2 + x3  
  POL(h1)=  0  
  POL(e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(g2)=  0  
  POL(h2)=  1  
  POL(g1)=  0  
  POL(e5(x1, x2, x3, x4))=  x1 + x2 + x3 + x4  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS9
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)
e4(i, x1, i, x1, i, x1, i, x1, x, y, z) -> e5(x1, x, y, z)

where the Polynomial interpretation:
  POL(i)=  0  
  POL(e6(x1, x2, x3))=  x1 + x2 + x3  
  POL(h1)=  0  
  POL(e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11))=  1 + x1 + x10 + x11 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9  
  POL(g2)=  0  
  POL(g1)=  0  
  POL(e5(x1, x2, x3, x4))=  x1 + x2 + x3 + x4  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS10
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

g1 -> h1

where the Polynomial interpretation:
  POL(i)=  0  
  POL(e6(x1, x2, x3))=  x1 + x2 + x3  
  POL(h1)=  0  
  POL(g2)=  0  
  POL(g1)=  1  
  POL(e5(x1, x2, x3, x4))=  x1 + x2 + x3 + x4  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS11
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

e5(i, x, y, z) -> e6(x, y, z)

where the Polynomial interpretation:
  POL(i)=  0  
  POL(h1)=  0  
  POL(e6(x1, x2, x3))=  x1 + x2 + x3  
  POL(g2)=  0  
  POL(e5(x1, x2, x3, x4))=  1 + x1 + x2 + x3 + x4  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS12
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

g2 -> h1

where the Polynomial interpretation:
  POL(h1)=  0  
  POL(g2)=  1  
was used.

All Rules of R can be deleted.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS13
Dependency Pair Analysis



R contains no Dependency Pairs and therefore no SCCs.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes