R
↳Dependency Pair Analysis
-'(s(x), s(y)) -> -'(x, y)
MIN(s(x), s(y)) -> MIN(x, y)
TWICE(s(x)) -> TWICE(x)
F(s(x), s(y)) -> F(-(y, min(x, y)), s(twice(min(x, y))))
F(s(x), s(y)) -> -'(y, min(x, y))
F(s(x), s(y)) -> MIN(x, y)
F(s(x), s(y)) -> TWICE(min(x, y))
F(s(x), s(y)) -> F(-(x, min(x, y)), s(twice(min(x, y))))
F(s(x), s(y)) -> -'(x, min(x, y))
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
-'(s(x), s(y)) -> -'(x, y)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
min(x, 0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
twice(0) -> 0
twice(s(x)) -> s(s(twice(x)))
f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 5
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
-'(s(x), s(y)) -> -'(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
MIN(s(x), s(y)) -> MIN(x, y)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
min(x, 0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
twice(0) -> 0
twice(s(x)) -> s(s(twice(x)))
f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 6
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
MIN(s(x), s(y)) -> MIN(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
TWICE(s(x)) -> TWICE(x)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
min(x, 0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
twice(0) -> 0
twice(s(x)) -> s(s(twice(x)))
f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 7
↳Size-Change Principle
→DP Problem 4
↳UsableRules
TWICE(s(x)) -> TWICE(x)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
F(s(x), s(y)) -> F(-(x, min(x, y)), s(twice(min(x, y))))
F(s(x), s(y)) -> F(-(y, min(x, y)), s(twice(min(x, y))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
min(x, 0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
twice(0) -> 0
twice(s(x)) -> s(s(twice(x)))
f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Narrowing Transformation
F(s(x), s(y)) -> F(-(x, min(x, y)), s(twice(min(x, y))))
F(s(x), s(y)) -> F(-(y, min(x, y)), s(twice(min(x, y))))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
innermost
six new Dependency Pairs are created:
F(s(x), s(y)) -> F(-(x, min(x, y)), s(twice(min(x, y))))
F(s(0), s(y'')) -> F(-(0, 0), s(twice(min(0, y''))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x''), s(0)) -> F(-(x'', 0), s(twice(min(x'', 0))))
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(twice(0)))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(twice(0)))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 9
↳Rewriting Transformation
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(twice(0)))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(twice(0)))
F(s(x''), s(0)) -> F(-(x'', 0), s(twice(min(x'', 0))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(0), s(y'')) -> F(-(0, 0), s(twice(min(0, y''))))
F(s(x), s(y)) -> F(-(y, min(x, y)), s(twice(min(x, y))))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
innermost
one new Dependency Pair is created:
F(s(0), s(y'')) -> F(-(0, 0), s(twice(min(0, y''))))
F(s(0), s(y'')) -> F(0, s(twice(min(0, y''))))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 10
↳Rewriting Transformation
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(twice(0)))
F(s(x''), s(0)) -> F(-(x'', 0), s(twice(min(x'', 0))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x), s(y)) -> F(-(y, min(x, y)), s(twice(min(x, y))))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(twice(0)))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
innermost
one new Dependency Pair is created:
F(s(x''), s(0)) -> F(-(x'', 0), s(twice(min(x'', 0))))
F(s(x''), s(0)) -> F(x'', s(twice(min(x'', 0))))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 11
↳Rewriting Transformation
F(s(x''), s(0)) -> F(x'', s(twice(min(x'', 0))))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(twice(0)))
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(twice(0)))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x), s(y)) -> F(-(y, min(x, y)), s(twice(min(x, y))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
innermost
one new Dependency Pair is created:
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(twice(0)))
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(0))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 12
↳Rewriting Transformation
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(0))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(twice(0)))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x), s(y)) -> F(-(y, min(x, y)), s(twice(min(x, y))))
F(s(x''), s(0)) -> F(x'', s(twice(min(x'', 0))))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
innermost
one new Dependency Pair is created:
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(twice(0)))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(0))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 13
↳Narrowing Transformation
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(0))
F(s(x''), s(0)) -> F(x'', s(twice(min(x'', 0))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x), s(y)) -> F(-(y, min(x, y)), s(twice(min(x, y))))
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(0))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
innermost
six new Dependency Pairs are created:
F(s(x), s(y)) -> F(-(y, min(x, y)), s(twice(min(x, y))))
F(s(0), s(y'')) -> F(-(y'', 0), s(twice(min(0, y''))))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x''), s(0)) -> F(-(0, 0), s(twice(min(x'', 0))))
F(s(0), s(y'')) -> F(-(y'', min(0, y'')), s(twice(0)))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(x''), s(0)) -> F(-(0, min(x'', 0)), s(twice(0)))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 14
↳Rewriting Transformation
F(s(x''), s(0)) -> F(-(0, min(x'', 0)), s(twice(0)))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(0), s(y'')) -> F(-(y'', min(0, y'')), s(twice(0)))
F(s(x''), s(0)) -> F(-(0, 0), s(twice(min(x'', 0))))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(0), s(y'')) -> F(-(y'', 0), s(twice(min(0, y''))))
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(0))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x''), s(0)) -> F(x'', s(twice(min(x'', 0))))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(0))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
innermost
one new Dependency Pair is created:
F(s(0), s(y'')) -> F(-(y'', 0), s(twice(min(0, y''))))
F(s(0), s(y'')) -> F(y'', s(twice(min(0, y''))))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 15
↳Rewriting Transformation
F(s(0), s(y'')) -> F(y'', s(twice(min(0, y''))))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(0), s(y'')) -> F(-(y'', min(0, y'')), s(twice(0)))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x''), s(0)) -> F(-(0, 0), s(twice(min(x'', 0))))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(0))
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(0))
F(s(x''), s(0)) -> F(x'', s(twice(min(x'', 0))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x''), s(0)) -> F(-(0, min(x'', 0)), s(twice(0)))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
innermost
one new Dependency Pair is created:
F(s(x''), s(0)) -> F(-(0, 0), s(twice(min(x'', 0))))
F(s(x''), s(0)) -> F(0, s(twice(min(x'', 0))))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 16
↳Rewriting Transformation
F(s(x''), s(0)) -> F(-(0, min(x'', 0)), s(twice(0)))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(0), s(y'')) -> F(-(y'', min(0, y'')), s(twice(0)))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(0))
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(0))
F(s(x''), s(0)) -> F(x'', s(twice(min(x'', 0))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(0), s(y'')) -> F(y'', s(twice(min(0, y''))))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
innermost
one new Dependency Pair is created:
F(s(0), s(y'')) -> F(-(y'', min(0, y'')), s(twice(0)))
F(s(0), s(y'')) -> F(-(y'', min(0, y'')), s(0))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 17
↳Rewriting Transformation
F(s(0), s(y'')) -> F(-(y'', min(0, y'')), s(0))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(0), s(y'')) -> F(y'', s(twice(min(0, y''))))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(0))
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(0))
F(s(x''), s(0)) -> F(x'', s(twice(min(x'', 0))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x''), s(0)) -> F(-(0, min(x'', 0)), s(twice(0)))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
innermost
one new Dependency Pair is created:
F(s(x''), s(0)) -> F(-(0, min(x'', 0)), s(twice(0)))
F(s(x''), s(0)) -> F(-(0, min(x'', 0)), s(0))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 18
↳Semantic Labelling
F(s(x''), s(0)) -> F(-(0, min(x'', 0)), s(0))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(0), s(y'')) -> F(y'', s(twice(min(0, y''))))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(0))
F(s(0), s(y'')) -> F(-(0, min(0, y'')), s(0))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x''), s(0)) -> F(x'', s(twice(min(x'', 0))))
F(s(0), s(y'')) -> F(-(y'', min(0, y'')), s(0))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
innermost
twice(x0) = 1 s(x0) = 1 F(x0, x1) = 0 -(x0, x1) = x0 min(x0, x1) = x0 0 = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 19
↳Unlabel
F11(s0(0), s1(y'')) -> F11(-10(y'', min01(0, y'')), s0(0))
F11(s1(s1(x'')), s1(s1(y''))) -> F11(-11(s1(x''), s1(min11(x'', y''))), s1(twice1(min11(s1(x''), s1(y'')))))
F11(s1(s1(x'')), s1(s0(y''))) -> F11(-11(s1(x''), s1(min10(x'', y''))), s1(twice1(min11(s1(x''), s0(y'')))))
F11(s1(s0(x'')), s1(s1(y''))) -> F11(-11(s0(x''), s0(min01(x'', y''))), s1(twice1(min11(s0(x''), s1(y'')))))
F11(s1(s0(x'')), s1(s0(y''))) -> F11(-11(s0(x''), s0(min00(x'', y''))), s1(twice1(min11(s0(x''), s0(y'')))))
F11(s1(s1(x'')), s1(s1(y''))) -> F11(-11(s1(x''), min11(s1(x''), s1(y''))), s1(twice1(s1(min11(x'', y'')))))
F11(s1(s1(x'')), s1(s0(y''))) -> F11(-11(s1(x''), min11(s1(x''), s0(y''))), s1(twice1(s1(min10(x'', y'')))))
F11(s1(s0(x'')), s1(s1(y''))) -> F11(-11(s0(x''), min11(s0(x''), s1(y''))), s1(twice1(s0(min01(x'', y'')))))
F11(s1(s0(x'')), s1(s0(y''))) -> F11(-11(s0(x''), min11(s0(x''), s0(y''))), s1(twice1(s0(min00(x'', y'')))))
F11(s1(x''), s0(0)) -> F11(x'', s1(twice1(min10(x'', 0))))
F11(s1(x''), s0(0)) -> F11(-11(x'', min10(x'', 0)), s0(0))
F11(s0(0), s1(y'')) -> F11(y'', s1(twice0(min01(0, y''))))
F11(s1(s1(x'')), s1(s1(y''))) -> F11(-11(s1(y''), s1(min11(x'', y''))), s1(twice1(min11(s1(x''), s1(y'')))))
F11(s1(s1(x'')), s1(s0(y''))) -> F11(-11(s0(y''), s1(min10(x'', y''))), s1(twice1(min11(s1(x''), s0(y'')))))
F11(s1(s0(x'')), s1(s1(y''))) -> F11(-11(s1(y''), s0(min01(x'', y''))), s1(twice1(min11(s0(x''), s1(y'')))))
F11(s1(s0(x'')), s1(s0(y''))) -> F11(-11(s0(y''), s0(min00(x'', y''))), s1(twice1(min11(s0(x''), s0(y'')))))
F11(s1(s1(x'')), s1(s1(y''))) -> F11(-11(s1(y''), min11(s1(x''), s1(y''))), s1(twice1(s1(min11(x'', y'')))))
F11(s1(s1(x'')), s1(s0(y''))) -> F11(-11(s0(y''), min11(s1(x''), s0(y''))), s1(twice1(s1(min10(x'', y'')))))
F11(s1(s0(x'')), s1(s1(y''))) -> F11(-11(s1(y''), min11(s0(x''), s1(y''))), s1(twice1(s0(min01(x'', y'')))))
F11(s1(s0(x'')), s1(s0(y''))) -> F11(-11(s0(y''), min11(s0(x''), s0(y''))), s1(twice1(s0(min00(x'', y'')))))
twice1(s0(x)) -> s1(s1(twice0(x)))
twice1(s1(x)) -> s1(s1(twice1(x)))
twice1(x) -> twice0(x)
s1(x) -> s0(x)
twice0(0) -> 0
min00(0, y) -> 0
min00(x, 0) -> 0
min01(0, y) -> 0
min01(x, x') -> min00(x, x')
min01(x, x') -> min10(x, x')
min11(s0(x), s0(y)) -> s0(min00(x, y))
min11(s0(x), s1(y)) -> s0(min01(x, y))
min11(s1(x), s0(y)) -> s1(min10(x, y))
min11(s1(x), s1(y)) -> s1(min11(x, y))
min11(x, x') -> min01(x, x')
min11(x, x') -> min00(x, x')
min11(x, x') -> min10(x, x')
min10(x, 0) -> 0
min10(x, x') -> min00(x, x')
-11(s0(x), s0(y)) -> -00(x, y)
-11(s0(x), s1(y)) -> -01(x, y)
-11(s1(x), s0(y)) -> -10(x, y)
-11(s1(x), s1(y)) -> -11(x, y)
-11(x, x') -> -00(x, x')
-11(x, x') -> -01(x, x')
-11(x, x') -> -10(x, x')
-00(x, 0) -> x
-01(x, x') -> -00(x, x')
-01(x, x') -> -10(x, x')
-10(x, 0) -> x
-10(x, x') -> -00(x, x')
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 20
↳Non-Overlappingness Check
F(s(0), s(y'')) -> F(y'', s(twice(min(0, y''))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(x''), s(0)) -> F(x'', s(twice(min(x'', 0))))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(0), s(y'')) -> F(-(y'', min(0, y'')), s(0))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(0))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 21
↳Remaining Obligation(s)
F(s(0), s(y'')) -> F(y'', s(twice(min(0, y''))))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), min(s(x''), s(y''))), s(twice(s(min(x'', y'')))))
F(s(x''), s(0)) -> F(x'', s(twice(min(x'', 0))))
F(s(s(x'')), s(s(y''))) -> F(-(s(y''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(0), s(y'')) -> F(-(y'', min(0, y'')), s(0))
F(s(s(x'')), s(s(y''))) -> F(-(s(x''), s(min(x'', y''))), s(twice(min(s(x''), s(y'')))))
F(s(x''), s(0)) -> F(-(x'', min(x'', 0)), s(0))
twice(s(x)) -> s(s(twice(x)))
twice(0) -> 0
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
min(x, 0) -> 0
innermost