R
↳Dependency Pair Analysis
-'(s(x), s(y)) -> -'(x, y)
+'(s(x), y) -> +'(x, y)
*'(x, s(y)) -> +'(x, *(x, y))
*'(x, s(y)) -> *'(x, y)
F(s(x)) -> F(-(p(*(s(x), s(x))), *(s(x), s(x))))
F(s(x)) -> -'(p(*(s(x), s(x))), *(s(x), s(x)))
F(s(x)) -> P(*(s(x), s(x)))
F(s(x)) -> *'(s(x), s(x))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
-'(s(x), s(y)) -> -'(x, y)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
-'(s(x), s(y)) -> -'(x, y)
-'(x1, x2) -> -'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
+'(s(x), y) -> +'(x, y)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
+'(s(x), y) -> +'(x, y)
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳Rw
*'(x, s(y)) -> *'(x, y)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
*'(x, s(y)) -> *'(x, y)
*'(x1, x2) -> *'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 7
↳Dependency Graph
→DP Problem 4
↳Rw
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rewriting Transformation
F(s(x)) -> F(-(p(*(s(x), s(x))), *(s(x), s(x))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(x)) -> F(-(p(*(s(x), s(x))), *(s(x), s(x))))
F(s(x)) -> F(-(p(+(s(x), *(s(x), x))), *(s(x), s(x))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rewriting Transformation
F(s(x)) -> F(-(p(+(s(x), *(s(x), x))), *(s(x), s(x))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(x)) -> F(-(p(+(s(x), *(s(x), x))), *(s(x), s(x))))
F(s(x)) -> F(-(p(s(+(x, *(s(x), x)))), *(s(x), s(x))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 9
↳Rewriting Transformation
F(s(x)) -> F(-(p(s(+(x, *(s(x), x)))), *(s(x), s(x))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(x)) -> F(-(p(s(+(x, *(s(x), x)))), *(s(x), s(x))))
F(s(x)) -> F(-(+(x, *(s(x), x)), *(s(x), s(x))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 10
↳Rewriting Transformation
F(s(x)) -> F(-(+(x, *(s(x), x)), *(s(x), s(x))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(x)) -> F(-(+(x, *(s(x), x)), *(s(x), s(x))))
F(s(x)) -> F(-(+(x, *(s(x), x)), +(s(x), *(s(x), x))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 11
↳Rewriting Transformation
F(s(x)) -> F(-(+(x, *(s(x), x)), +(s(x), *(s(x), x))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(x)) -> F(-(+(x, *(s(x), x)), +(s(x), *(s(x), x))))
F(s(x)) -> F(-(+(x, *(s(x), x)), s(+(x, *(s(x), x)))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 12
↳Narrowing Transformation
F(s(x)) -> F(-(+(x, *(s(x), x)), s(+(x, *(s(x), x)))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
eight new Dependency Pairs are created:
F(s(x)) -> F(-(+(x, *(s(x), x)), s(+(x, *(s(x), x)))))
F(s(0)) -> F(-(*(s(0), 0), s(+(0, *(s(0), 0)))))
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(+(s(x''), *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(+(0, 0), s(+(0, *(s(0), 0)))))
F(s(s(y'))) -> F(-(+(s(y'), +(s(s(y')), *(s(s(y')), y'))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(*(s(0), 0))))
F(s(s(x''))) -> F(-(+(s(x''), *(s(s(x'')), s(x''))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(+(0, 0))))
F(s(s(y'))) -> F(-(+(s(y'), *(s(s(y')), s(y'))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 13
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(s(y'), *(s(s(y')), s(y'))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(+(0, 0))))
F(s(s(x''))) -> F(-(+(s(x''), *(s(s(x'')), s(x''))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(*(s(0), 0))))
F(s(s(y'))) -> F(-(+(s(y'), +(s(s(y')), *(s(s(y')), y'))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(0)) -> F(-(+(0, 0), s(+(0, *(s(0), 0)))))
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(+(s(x''), *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(*(s(0), 0), s(+(0, *(s(0), 0)))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(*(s(0), 0), s(+(0, *(s(0), 0)))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 14
↳Rewriting Transformation
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(+(0, 0))))
F(s(s(x''))) -> F(-(+(s(x''), *(s(s(x'')), s(x''))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(*(s(0), 0))))
F(s(s(y'))) -> F(-(+(s(y'), +(s(s(y')), *(s(s(y')), y'))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(0)) -> F(-(+(0, 0), s(+(0, *(s(0), 0)))))
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(+(s(x''), *(s(s(x'')), s(x''))))))
F(s(s(y'))) -> F(-(+(s(y'), *(s(s(y')), s(y'))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(+(s(x''), *(s(s(x'')), s(x''))))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), +(s(x''), *(s(s(x'')), s(x'')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 15
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(s(y'))) -> F(-(+(s(y'), *(s(s(y')), s(y'))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(+(0, 0))))
F(s(s(x''))) -> F(-(+(s(x''), *(s(s(x'')), s(x''))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(*(s(0), 0))))
F(s(s(y'))) -> F(-(+(s(y'), +(s(s(y')), *(s(s(y')), y'))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(0)) -> F(-(+(0, 0), s(+(0, *(s(0), 0)))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(+(0, 0), s(+(0, *(s(0), 0)))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 16
↳Rewriting Transformation
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(s(y'))) -> F(-(+(s(y'), *(s(s(y')), s(y'))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(+(0, 0))))
F(s(s(x''))) -> F(-(+(s(x''), *(s(s(x'')), s(x''))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(*(s(0), 0))))
F(s(s(y'))) -> F(-(+(s(y'), +(s(s(y')), *(s(s(y')), y'))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), +(s(x''), *(s(s(x'')), s(x'')))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(s(y'), +(s(s(y')), *(s(s(y')), y'))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(s(y'))) -> F(-(s(+(y', +(s(s(y')), *(s(s(y')), y')))), s(+(s(y'), *(s(s(y')), s(y'))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 17
↳Rewriting Transformation
F(s(s(y'))) -> F(-(s(+(y', +(s(s(y')), *(s(s(y')), y')))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(s(y'))) -> F(-(+(s(y'), *(s(s(y')), s(y'))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(+(0, 0))))
F(s(s(x''))) -> F(-(+(s(x''), *(s(s(x'')), s(x''))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(*(s(0), 0))))
F(s(0)) -> F(-(*(s(0), 0), s(*(s(0), 0))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 18
↳Rewriting Transformation
F(s(0)) -> F(-(*(s(0), 0), s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(s(y'))) -> F(-(+(s(y'), *(s(s(y')), s(y'))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(+(0, 0))))
F(s(s(x''))) -> F(-(+(s(x''), *(s(s(x'')), s(x''))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(s(y'))) -> F(-(s(+(y', +(s(s(y')), *(s(s(y')), y')))), s(+(s(y'), *(s(s(y')), s(y'))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(s(x''), *(s(s(x'')), s(x''))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 19
↳Rewriting Transformation
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(s(y'))) -> F(-(s(+(y', +(s(s(y')), *(s(s(y')), y')))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(s(y'))) -> F(-(+(s(y'), *(s(s(y')), s(y'))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(+(0, 0))))
F(s(0)) -> F(-(*(s(0), 0), s(*(s(0), 0))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(+(0, *(s(0), 0)), s(+(0, 0))))
F(s(0)) -> F(-(*(s(0), 0), s(+(0, 0))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 20
↳Rewriting Transformation
F(s(0)) -> F(-(*(s(0), 0), s(+(0, 0))))
F(s(0)) -> F(-(*(s(0), 0), s(*(s(0), 0))))
F(s(s(y'))) -> F(-(s(+(y', +(s(s(y')), *(s(s(y')), y')))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(s(y'))) -> F(-(+(s(y'), *(s(s(y')), s(y'))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(s(y'), *(s(s(y')), s(y'))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(s(y'))) -> F(-(s(+(y', *(s(s(y')), s(y')))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 21
↳Rewriting Transformation
F(s(s(y'))) -> F(-(s(+(y', *(s(s(y')), s(y')))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(0)) -> F(-(*(s(0), 0), s(*(s(0), 0))))
F(s(s(y'))) -> F(-(s(+(y', +(s(s(y')), *(s(s(y')), y')))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(0)) -> F(-(*(s(0), 0), s(+(0, 0))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 22
↳Rewriting Transformation
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(0)) -> F(-(*(s(0), 0), s(+(0, 0))))
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(0)) -> F(-(*(s(0), 0), s(*(s(0), 0))))
F(s(s(y'))) -> F(-(s(+(y', +(s(s(y')), *(s(s(y')), y')))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(s(y'))) -> F(-(s(+(y', *(s(s(y')), s(y')))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), +(s(x''), *(s(s(x'')), s(x'')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 23
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(s(y'))) -> F(-(s(+(y', *(s(s(y')), s(y')))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(*(s(0), 0), s(+(0, 0))))
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(0)) -> F(-(*(s(0), 0), s(*(s(0), 0))))
F(s(s(y'))) -> F(-(s(+(y', +(s(s(y')), *(s(s(y')), y')))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(0, s(+(0, *(s(0), 0)))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 24
↳Rewriting Transformation
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(y'))) -> F(-(s(+(y', *(s(s(y')), s(y')))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(*(s(0), 0), s(+(0, 0))))
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(0)) -> F(-(*(s(0), 0), s(*(s(0), 0))))
F(s(s(y'))) -> F(-(s(+(y', +(s(s(y')), *(s(s(y')), y')))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), +(s(x''), *(s(s(x'')), s(x'')))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(s(+(y', +(s(s(y')), *(s(s(y')), y')))), s(+(s(y'), *(s(s(y')), s(y'))))))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), *(s(s(y')), s(y')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 25
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), *(s(s(y')), s(y')))))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(y'))) -> F(-(s(+(y', *(s(s(y')), s(y')))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(*(s(0), 0), s(+(0, 0))))
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(0)) -> F(-(*(s(0), 0), s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(*(s(0), 0), s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 26
↳Rewriting Transformation
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(y'))) -> F(-(s(+(y', *(s(s(y')), s(y')))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(*(s(0), 0), s(+(0, 0))))
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), *(s(s(y')), s(y')))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(s(+(x'', *(s(s(x'')), s(x'')))), s(s(+(x'', *(s(s(x'')), s(x'')))))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), s(+(x'', *(s(s(x'')), s(x''))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 27
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), *(s(s(y')), s(y')))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(y'))) -> F(-(s(+(y', *(s(s(y')), s(y')))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(*(s(0), 0), s(+(0, 0))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(*(s(0), 0), s(+(0, 0))))
F(s(0)) -> F(-(0, s(+(0, 0))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 28
↳Rewriting Transformation
F(s(0)) -> F(-(0, s(+(0, 0))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), *(s(s(y')), s(y')))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(y'))) -> F(-(s(+(y', *(s(s(y')), s(y')))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), s(+(x'', *(s(s(x'')), s(x''))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(s(+(y', *(s(s(y')), s(y')))), s(+(s(y'), +(s(s(y')), *(s(s(y')), y'))))))
F(s(s(y'))) -> F(-(+(y', *(s(s(y')), s(y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 29
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', *(s(s(y')), s(y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), *(s(s(y')), s(y')))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(+(0, 0))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 30
↳Rewriting Transformation
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(+(0, 0))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), *(s(s(y')), s(y')))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(s(y'))) -> F(-(+(y', *(s(s(y')), s(y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), +(s(x''), *(s(s(x'')), s(x'')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 31
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(s(y'))) -> F(-(+(y', *(s(s(y')), s(y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(0)) -> F(-(0, s(+(0, 0))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), *(s(s(y')), s(y')))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(0)))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 32
↳Rewriting Transformation
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', *(s(s(y')), s(y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(0)) -> F(-(0, s(+(0, 0))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), *(s(s(y')), s(y')))))
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), +(s(x''), *(s(s(x'')), s(x'')))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), *(s(s(y')), s(y')))))
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), *(s(s(y')), s(y')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 33
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), *(s(s(y')), s(y')))))
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', *(s(s(y')), s(y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(0)) -> F(-(0, s(+(0, 0))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(0)))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(0, s(*(s(0), 0))))
F(s(0)) -> F(-(0, s(0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 34
↳Rewriting Transformation
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', *(s(s(y')), s(y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(0)) -> F(-(0, s(+(0, 0))))
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), *(s(s(y')), s(y')))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', *(s(s(x'')), s(x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), s(+(x'', *(s(s(x'')), s(x''))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 35
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), *(s(s(y')), s(y')))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', *(s(s(y')), s(y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(0)) -> F(-(0, s(+(0, 0))))
F(s(0)) -> F(-(0, s(0)))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(0, s(+(0, 0))))
F(s(0)) -> F(-(0, s(0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 36
↳Rewriting Transformation
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), *(s(s(y')), s(y')))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', *(s(s(y')), s(y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), s(+(x'', *(s(s(x'')), s(x''))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', *(s(s(y')), s(y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 37
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), *(s(s(y')), s(y')))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), +(s(x''), *(s(s(x'')), s(x'')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 38
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), *(s(s(y')), s(y')))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), *(s(s(y')), s(y')))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), *(s(s(y')), s(y')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 39
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), *(s(s(y')), s(y')))))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), +(s(x''), *(s(s(x'')), s(x'')))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', +(s(s(x'')), *(s(s(x'')), x''))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), s(+(x'', *(s(s(x'')), s(x''))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 40
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), *(s(s(y')), s(y')))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', +(s(s(y')), *(s(s(y')), y'))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 41
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), *(s(s(y')), s(y')))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), s(+(x'', *(s(s(x'')), s(x''))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), +(s(x''), *(s(s(x'')), s(x'')))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 42
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), *(s(s(y')), s(y')))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), *(s(s(y')), s(y')))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', *(s(s(y')), s(y'))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 43
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', *(s(s(y')), s(y'))))))
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', s(+(s(x''), *(s(s(x'')), x'')))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 44
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', *(s(s(y')), s(y'))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', s(+(s(y'), *(s(s(y')), y')))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 45
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', *(s(s(y')), s(y'))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 46
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', *(s(s(y')), s(y'))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', *(s(s(y')), s(y'))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 47
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', *(s(s(x'')), s(x''))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 48
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), +(s(y'), +(s(s(y')), *(s(s(y')), y')))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 49
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 50
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 51
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', +(s(s(x'')), *(s(s(x'')), x''))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 52
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', +(s(s(y')), *(s(s(y')), y'))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 53
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 54
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 55
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(+(s(x''), *(s(s(x'')), x'')))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 56
↳Rewriting Transformation
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(+(s(y'), *(s(s(y')), y')))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 57
↳Narrowing Transformation
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
no new Dependency Pairs are created.
F(s(0)) -> F(-(0, s(0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 58
↳Narrowing Transformation
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
no new Dependency Pairs are created.
F(s(0)) -> F(-(0, s(0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 59
↳Narrowing Transformation
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
F(s(0)) -> F(-(0, s(0)))
F(s(0)) -> F(-(0, s(0)))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
no new Dependency Pairs are created.
F(s(0)) -> F(-(0, s(0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 60
↳Narrowing Transformation
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
F(s(0)) -> F(-(0, s(0)))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost
no new Dependency Pairs are created.
F(s(0)) -> F(-(0, s(0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Rw
→DP Problem 8
↳Rw
...
→DP Problem 61
↳Remaining Obligation(s)
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
F(s(s(y'))) -> F(-(+(y', s(s(+(y', *(s(s(y')), y'))))), s(+(y', s(s(+(y', *(s(s(y')), y'))))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
F(s(s(x''))) -> F(-(+(x'', s(s(+(x'', *(s(s(x'')), x''))))), s(+(x'', s(s(+(x'', *(s(s(x'')), x''))))))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
p(s(x)) -> x
f(s(x)) -> f(-(p(*(s(x), s(x))), *(s(x), s(x))))
innermost