R
↳Dependency Pair Analysis
-'(s(x), s(y)) -> -'(x, y)
+'(s(x), y) -> +'(x, y)
*'(x, s(y)) -> +'(x, *(x, y))
*'(x, s(y)) -> *'(x, y)
F(s(x)) -> F(-(*(s(s(0)), s(x)), s(s(x))))
F(s(x)) -> -'(*(s(s(0)), s(x)), s(s(x)))
F(s(x)) -> *'(s(s(0)), s(x))
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
-'(s(x), s(y)) -> -'(x, y)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
f(s(x)) -> f(-(*(s(s(0)), s(x)), s(s(x))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 5
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
-'(s(x), s(y)) -> -'(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
+'(s(x), y) -> +'(x, y)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
f(s(x)) -> f(-(*(s(s(0)), s(x)), s(s(x))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 6
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
+'(s(x), y) -> +'(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
*'(x, s(y)) -> *'(x, y)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
f(s(x)) -> f(-(*(s(s(0)), s(x)), s(s(x))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 7
↳Size-Change Principle
→DP Problem 4
↳UsableRules
*'(x, s(y)) -> *'(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
F(s(x)) -> F(-(*(s(s(0)), s(x)), s(s(x))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
*(x, 0) -> 0
*(x, s(y)) -> +(x, *(x, y))
f(s(x)) -> f(-(*(s(s(0)), s(x)), s(s(x))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rewriting Transformation
F(s(x)) -> F(-(*(s(s(0)), s(x)), s(s(x))))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
one new Dependency Pair is created:
F(s(x)) -> F(-(*(s(s(0)), s(x)), s(s(x))))
F(s(x)) -> F(-(+(s(s(0)), *(s(s(0)), x)), s(s(x))))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 9
↳Rewriting Transformation
F(s(x)) -> F(-(+(s(s(0)), *(s(s(0)), x)), s(s(x))))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
one new Dependency Pair is created:
F(s(x)) -> F(-(+(s(s(0)), *(s(s(0)), x)), s(s(x))))
F(s(x)) -> F(-(s(+(s(0), *(s(s(0)), x))), s(s(x))))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 10
↳Rewriting Transformation
F(s(x)) -> F(-(s(+(s(0), *(s(s(0)), x))), s(s(x))))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
one new Dependency Pair is created:
F(s(x)) -> F(-(s(+(s(0), *(s(s(0)), x))), s(s(x))))
F(s(x)) -> F(-(+(s(0), *(s(s(0)), x)), s(x)))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 11
↳Rewriting Transformation
F(s(x)) -> F(-(+(s(0), *(s(s(0)), x)), s(x)))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
one new Dependency Pair is created:
F(s(x)) -> F(-(+(s(0), *(s(s(0)), x)), s(x)))
F(s(x)) -> F(-(s(+(0, *(s(s(0)), x))), s(x)))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 12
↳Rewriting Transformation
F(s(x)) -> F(-(s(+(0, *(s(s(0)), x))), s(x)))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
one new Dependency Pair is created:
F(s(x)) -> F(-(s(+(0, *(s(s(0)), x))), s(x)))
F(s(x)) -> F(-(+(0, *(s(s(0)), x)), x))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 13
↳Rewriting Transformation
F(s(x)) -> F(-(+(0, *(s(s(0)), x)), x))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
one new Dependency Pair is created:
F(s(x)) -> F(-(+(0, *(s(s(0)), x)), x))
F(s(x)) -> F(-(*(s(s(0)), x), x))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 14
↳Narrowing Transformation
F(s(x)) -> F(-(*(s(s(0)), x), x))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
three new Dependency Pairs are created:
F(s(x)) -> F(-(*(s(s(0)), x), x))
F(s(0)) -> F(*(s(s(0)), 0))
F(s(s(y'))) -> F(-(+(s(s(0)), *(s(s(0)), y')), s(y')))
F(s(0)) -> F(-(0, 0))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 15
↳Rewriting Transformation
F(s(0)) -> F(-(0, 0))
F(s(s(y'))) -> F(-(+(s(s(0)), *(s(s(0)), y')), s(y')))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(s(s(0)), *(s(s(0)), y')), s(y')))
F(s(s(y'))) -> F(-(s(+(s(0), *(s(s(0)), y'))), s(y')))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 16
↳Rewriting Transformation
F(s(s(y'))) -> F(-(s(+(s(0), *(s(s(0)), y'))), s(y')))
F(s(0)) -> F(-(0, 0))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
one new Dependency Pair is created:
F(s(0)) -> F(-(0, 0))
F(s(0)) -> F(0)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 17
↳Rewriting Transformation
F(s(s(y'))) -> F(-(s(+(s(0), *(s(s(0)), y'))), s(y')))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(s(+(s(0), *(s(s(0)), y'))), s(y')))
F(s(s(y'))) -> F(-(+(s(0), *(s(s(0)), y')), y'))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 18
↳Rewriting Transformation
F(s(s(y'))) -> F(-(+(s(0), *(s(s(0)), y')), y'))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(+(s(0), *(s(s(0)), y')), y'))
F(s(s(y'))) -> F(-(s(+(0, *(s(s(0)), y'))), y'))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 19
↳Rewriting Transformation
F(s(s(y'))) -> F(-(s(+(0, *(s(s(0)), y'))), y'))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost
one new Dependency Pair is created:
F(s(s(y'))) -> F(-(s(+(0, *(s(s(0)), y'))), y'))
F(s(s(y'))) -> F(-(s(*(s(s(0)), y')), y'))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Rw
...
→DP Problem 20
↳Remaining Obligation(s)
F(s(s(y'))) -> F(-(s(*(s(s(0)), y')), y'))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
*(x, s(y)) -> +(x, *(x, y))
*(x, 0) -> 0
innermost