R
↳Dependency Pair Analysis
-'(s(x), s(y)) -> -'(x, y)
F(s(x), y) -> F(p(-(s(x), y)), p(-(y, s(x))))
F(s(x), y) -> P(-(s(x), y))
F(s(x), y) -> -'(s(x), y)
F(s(x), y) -> P(-(y, s(x)))
F(s(x), y) -> -'(y, s(x))
F(x, s(y)) -> F(p(-(x, s(y))), p(-(s(y), x)))
F(x, s(y)) -> P(-(x, s(y)))
F(x, s(y)) -> -'(x, s(y))
F(x, s(y)) -> P(-(s(y), x))
F(x, s(y)) -> -'(s(y), x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
-'(s(x), s(y)) -> -'(x, y)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
one new Dependency Pair is created:
-'(s(x), s(y)) -> -'(x, y)
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
one new Dependency Pair is created:
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Nar
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
POL(-'(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
F(x, s(y)) -> F(p(-(x, s(y))), p(-(s(y), x)))
F(s(x), y) -> F(p(-(s(x), y)), p(-(y, s(x))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
three new Dependency Pairs are created:
F(s(x), y) -> F(p(-(s(x), y)), p(-(y, s(x))))
F(s(x''), 0) -> F(p(s(x'')), p(-(0, s(x''))))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(s(y''), s(x''))))
F(s(x0), s(x'')) -> F(p(-(s(x0), s(x''))), p(-(x'', x0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Rewriting Transformation
F(s(x0), s(x'')) -> F(p(-(s(x0), s(x''))), p(-(x'', x0)))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(s(y''), s(x''))))
F(s(x''), 0) -> F(p(s(x'')), p(-(0, s(x''))))
F(x, s(y)) -> F(p(-(x, s(y))), p(-(s(y), x)))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
one new Dependency Pair is created:
F(s(x''), 0) -> F(p(s(x'')), p(-(0, s(x''))))
F(s(x''), 0) -> F(x'', p(-(0, s(x''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 7
↳Rewriting Transformation
F(s(x''), 0) -> F(x'', p(-(0, s(x''))))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(s(y''), s(x''))))
F(x, s(y)) -> F(p(-(x, s(y))), p(-(s(y), x)))
F(s(x0), s(x'')) -> F(p(-(s(x0), s(x''))), p(-(x'', x0)))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
one new Dependency Pair is created:
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(s(y''), s(x''))))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 8
↳Rewriting Transformation
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
F(s(x0), s(x'')) -> F(p(-(s(x0), s(x''))), p(-(x'', x0)))
F(x, s(y)) -> F(p(-(x, s(y))), p(-(s(y), x)))
F(s(x''), 0) -> F(x'', p(-(0, s(x''))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
one new Dependency Pair is created:
F(s(x0), s(x'')) -> F(p(-(s(x0), s(x''))), p(-(x'', x0)))
F(s(x0), s(x'')) -> F(p(-(x0, x'')), p(-(x'', x0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 9
↳Narrowing Transformation
F(s(x0), s(x'')) -> F(p(-(x0, x'')), p(-(x'', x0)))
F(s(x''), 0) -> F(x'', p(-(0, s(x''))))
F(x, s(y)) -> F(p(-(x, s(y))), p(-(s(y), x)))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
three new Dependency Pairs are created:
F(x, s(y)) -> F(p(-(x, s(y))), p(-(s(y), x)))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(s(y''), s(x''))))
F(0, s(y')) -> F(p(-(0, s(y'))), p(s(y')))
F(s(y''), s(y0)) -> F(p(-(s(y''), s(y0))), p(-(y0, y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 10
↳Rewriting Transformation
F(s(y''), s(y0)) -> F(p(-(s(y''), s(y0))), p(-(y0, y'')))
F(0, s(y')) -> F(p(-(0, s(y'))), p(s(y')))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(s(y''), s(x''))))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
F(s(x''), 0) -> F(x'', p(-(0, s(x''))))
F(s(x0), s(x'')) -> F(p(-(x0, x'')), p(-(x'', x0)))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
one new Dependency Pair is created:
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(s(y''), s(x''))))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 11
↳Rewriting Transformation
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
F(0, s(y')) -> F(p(-(0, s(y'))), p(s(y')))
F(s(x0), s(x'')) -> F(p(-(x0, x'')), p(-(x'', x0)))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
F(s(x''), 0) -> F(x'', p(-(0, s(x''))))
F(s(y''), s(y0)) -> F(p(-(s(y''), s(y0))), p(-(y0, y'')))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
one new Dependency Pair is created:
F(0, s(y')) -> F(p(-(0, s(y'))), p(s(y')))
F(0, s(y')) -> F(p(-(0, s(y'))), y')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 12
↳Rewriting Transformation
F(0, s(y')) -> F(p(-(0, s(y'))), y')
F(s(y''), s(y0)) -> F(p(-(s(y''), s(y0))), p(-(y0, y'')))
F(s(x0), s(x'')) -> F(p(-(x0, x'')), p(-(x'', x0)))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
F(s(x''), 0) -> F(x'', p(-(0, s(x''))))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
one new Dependency Pair is created:
F(s(y''), s(y0)) -> F(p(-(s(y''), s(y0))), p(-(y0, y'')))
F(s(y''), s(y0)) -> F(p(-(y'', y0)), p(-(y0, y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 13
↳Narrowing Transformation
F(s(y''), s(y0)) -> F(p(-(y'', y0)), p(-(y0, y'')))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
F(s(x0), s(x'')) -> F(p(-(x0, x'')), p(-(x'', x0)))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
F(s(x''), 0) -> F(x'', p(-(0, s(x''))))
F(0, s(y')) -> F(p(-(0, s(y'))), y')
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
no new Dependency Pairs are created.
F(s(x''), 0) -> F(x'', p(-(0, s(x''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 14
↳Narrowing Transformation
F(0, s(y')) -> F(p(-(0, s(y'))), y')
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
F(s(x0), s(x'')) -> F(p(-(x0, x'')), p(-(x'', x0)))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
F(s(y''), s(y0)) -> F(p(-(y'', y0)), p(-(y0, y'')))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
no new Dependency Pairs are created.
F(0, s(y')) -> F(p(-(0, s(y'))), y')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 15
↳Polynomial Ordering
F(s(y''), s(y0)) -> F(p(-(y'', y0)), p(-(y0, y'')))
F(s(x0), s(x'')) -> F(p(-(x0, x'')), p(-(x'', x0)))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost
F(s(y''), s(y0)) -> F(p(-(y'', y0)), p(-(y0, y'')))
F(s(x0), s(x'')) -> F(p(-(x0, x'')), p(-(x'', x0)))
F(s(x''), s(y'')) -> F(p(-(x'', y'')), p(-(y'', x'')))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
POL(0) = 1 POL(s(x1)) = 1 + x1 POL(-(x1, x2)) = x1 POL(F(x1, x2)) = x1 POL(p(x1)) = x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 16
↳Dependency Graph
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
p(s(x)) -> x
f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x)))
innermost