R
↳Dependency Pair Analysis
CIRC(cons(a, s), t) -> MSUBST(a, t)
CIRC(cons(a, s), t) -> CIRC(s, t)
CIRC(cons(lift, s), cons(a, t)) -> CIRC(s, t)
CIRC(cons(lift, s), cons(lift, t)) -> CIRC(s, t)
CIRC(circ(s, t), u) -> CIRC(s, circ(t, u))
CIRC(circ(s, t), u) -> CIRC(t, u)
CIRC(cons(lift, s), circ(cons(lift, t), u)) -> CIRC(cons(lift, circ(s, t)), u)
CIRC(cons(lift, s), circ(cons(lift, t), u)) -> CIRC(s, t)
MSUBST(msubst(a, s), t) -> MSUBST(a, circ(s, t))
MSUBST(msubst(a, s), t) -> CIRC(s, t)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
CIRC(circ(s, t), u) -> CIRC(t, u)
CIRC(cons(lift, s), cons(lift, t)) -> CIRC(s, t)
CIRC(cons(lift, s), cons(a, t)) -> CIRC(s, t)
CIRC(cons(a, s), t) -> CIRC(s, t)
MSUBST(msubst(a, s), t) -> CIRC(s, t)
CIRC(cons(a, s), t) -> MSUBST(a, t)
circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t))
circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t))
circ(circ(s, t), u) -> circ(s, circ(t, u))
circ(s, id) -> s
circ(id, s) -> s
circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u)
subst(a, id) -> a
msubst(a, id) -> a
msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
innermost
CIRC(cons(lift, s), cons(lift, t)) -> CIRC(s, t)
CIRC(cons(lift, s), cons(a, t)) -> CIRC(s, t)
POL(CIRC(x1, x2)) = x2 POL(circ(x1, x2)) = 0 POL(lift) = 0 POL(cons(x1, x2)) = 1 + x2 POL(msubst(x1, x2)) = 0 POL(MSUBST(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
CIRC(circ(s, t), u) -> CIRC(t, u)
CIRC(cons(a, s), t) -> CIRC(s, t)
MSUBST(msubst(a, s), t) -> CIRC(s, t)
CIRC(cons(a, s), t) -> MSUBST(a, t)
circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t))
circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t))
circ(circ(s, t), u) -> circ(s, circ(t, u))
circ(s, id) -> s
circ(id, s) -> s
circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u)
subst(a, id) -> a
msubst(a, id) -> a
msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
innermost
CIRC(circ(s, t), u) -> CIRC(t, u)
POL(CIRC(x1, x2)) = x1 POL(circ(x1, x2)) = 1 + x2 POL(cons(x1, x2)) = x1 + x2 POL(msubst(x1, x2)) = x2 POL(MSUBST(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Polynomial Ordering
CIRC(cons(a, s), t) -> CIRC(s, t)
MSUBST(msubst(a, s), t) -> CIRC(s, t)
CIRC(cons(a, s), t) -> MSUBST(a, t)
circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t))
circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t))
circ(circ(s, t), u) -> circ(s, circ(t, u))
circ(s, id) -> s
circ(id, s) -> s
circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u)
subst(a, id) -> a
msubst(a, id) -> a
msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
innermost
MSUBST(msubst(a, s), t) -> CIRC(s, t)
POL(CIRC(x1, x2)) = x1 POL(cons(x1, x2)) = x1 + x2 POL(msubst(x1, x2)) = 1 + x1 + x2 POL(MSUBST(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 4
↳Dependency Graph
CIRC(cons(a, s), t) -> CIRC(s, t)
CIRC(cons(a, s), t) -> MSUBST(a, t)
circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t))
circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t))
circ(circ(s, t), u) -> circ(s, circ(t, u))
circ(s, id) -> s
circ(id, s) -> s
circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u)
subst(a, id) -> a
msubst(a, id) -> a
msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 5
↳Polynomial Ordering
CIRC(cons(a, s), t) -> CIRC(s, t)
circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t))
circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t))
circ(circ(s, t), u) -> circ(s, circ(t, u))
circ(s, id) -> s
circ(id, s) -> s
circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u)
subst(a, id) -> a
msubst(a, id) -> a
msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
innermost
CIRC(cons(a, s), t) -> CIRC(s, t)
POL(CIRC(x1, x2)) = x1 POL(cons(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 6
↳Dependency Graph
circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t))
circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t))
circ(circ(s, t), u) -> circ(s, circ(t, u))
circ(s, id) -> s
circ(id, s) -> s
circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u)
subst(a, id) -> a
msubst(a, id) -> a
msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
innermost