R
↳Removing Redundant Rules for Innermost Termination
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
R
↳RRRI
→TRS2
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
MINUS(x, y) -> IF(le(x, y), x, y)
MINUS(x, y) -> LE(x, y)
IF(false, x, y) -> MINUS(p(x), y)
IF(false, x, y) -> P(x)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Non-Overlappingness Check
→DP Problem 2
↳NOC
LE(s(x), s(y)) -> LE(x, y)
p(0) -> s(s(0))
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳NOC
...
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 2
↳NOC
LE(s(x), s(y)) -> LE(x, y)
p(0) -> s(s(0))
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳NOC
...
→DP Problem 4
↳Size-Change Principle
→DP Problem 2
↳NOC
LE(s(x), s(y)) -> LE(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳Non-Overlappingness Check
IF(false, x, y) -> MINUS(p(x), y)
MINUS(x, y) -> IF(le(x, y), x, y)
p(0) -> s(s(0))
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳NOC
...
→DP Problem 5
↳Usable Rules (Innermost)
IF(false, x, y) -> MINUS(p(x), y)
MINUS(x, y) -> IF(le(x, y), x, y)
p(0) -> s(s(0))
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳NOC
...
→DP Problem 6
↳Narrowing Transformation
IF(false, x, y) -> MINUS(p(x), y)
MINUS(x, y) -> IF(le(x, y), x, y)
p(0) -> s(s(0))
p(s(x)) -> x
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false
innermost
three new Dependency Pairs are created:
MINUS(x, y) -> IF(le(x, y), x, y)
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
MINUS(0, y'') -> IF(true, 0, y'')
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳NOC
...
→DP Problem 7
↳Narrowing Transformation
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
IF(false, x, y) -> MINUS(p(x), y)
p(0) -> s(s(0))
p(s(x)) -> x
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false
innermost
two new Dependency Pairs are created:
IF(false, x, y) -> MINUS(p(x), y)
IF(false, 0, y) -> MINUS(s(s(0)), y)
IF(false, s(x''), y) -> MINUS(x'', y)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳NOC
...
→DP Problem 8
↳Instantiation Transformation
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
IF(false, s(x''), y) -> MINUS(x'', y)
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
p(0) -> s(s(0))
p(s(x)) -> x
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false
innermost
two new Dependency Pairs are created:
IF(false, s(x''), y) -> MINUS(x'', y)
IF(false, s(x''''), s(y'''')) -> MINUS(x'''', s(y''''))
IF(false, s(x''''), 0) -> MINUS(x'''', 0)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳NOC
...
→DP Problem 9
↳Usable Rules (Innermost)
IF(false, s(x''''), s(y'''')) -> MINUS(x'''', s(y''''))
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
p(0) -> s(s(0))
p(s(x)) -> x
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false
innermost
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳NOC
...
→DP Problem 11
↳Size-Change Principle
IF(false, s(x''''), s(y'''')) -> MINUS(x'''', s(y''''))
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false
innermost
|
|
|
|
trivial
s(x1) -> s(x1)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳NOC
...
→DP Problem 10
↳Usable Rules (Innermost)
IF(false, s(x''''), 0) -> MINUS(x'''', 0)
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
p(0) -> s(s(0))
p(s(x)) -> x
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false
innermost
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳NOC
...
→DP Problem 12
↳Size-Change Principle
IF(false, s(x''''), 0) -> MINUS(x'''', 0)
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
none
innermost
|
|
|
|
trivial
s(x1) -> s(x1)