R
↳Dependency Pair Analysis
P(p(s(x))) -> P(x)
LE(p(s(x)), x) -> LE(x, x)
LE(s(x), s(y)) -> LE(x, y)
MINUS(x, y) -> IF(le(x, y), x, y)
MINUS(x, y) -> LE(x, y)
IF(false, x, y) -> MINUS(p(x), y)
IF(false, x, y) -> P(x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
LE(s(x), s(y)) -> LE(x, y)
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
LE(s(x), s(y)) -> LE(x, y)
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Nar
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
POL(LE(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
IF(false, x, y) -> MINUS(p(x), y)
MINUS(x, y) -> IF(le(x, y), x, y)
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
three new Dependency Pairs are created:
MINUS(x, y) -> IF(le(x, y), x, y)
MINUS(0, y'') -> IF(true, 0, y'')
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Narrowing Transformation
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
IF(false, x, y) -> MINUS(p(x), y)
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
two new Dependency Pairs are created:
IF(false, x, y) -> MINUS(p(x), y)
IF(false, 0, y) -> MINUS(s(s(0)), y)
IF(false, s(x''), y) -> MINUS(x'', y)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
IF(false, s(x''), y) -> MINUS(x'', y)
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
three new Dependency Pairs are created:
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
MINUS(s(0), s(y''')) -> IF(true, s(0), s(y'''))
MINUS(s(s(x')), s(0)) -> IF(false, s(s(x')), s(0))
MINUS(s(s(x')), s(s(y'))) -> IF(le(x', y'), s(s(x')), s(s(y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Instantiation Transformation
MINUS(s(s(x')), s(s(y'))) -> IF(le(x', y'), s(s(x')), s(s(y')))
MINUS(s(s(x')), s(0)) -> IF(false, s(s(x')), s(0))
IF(false, s(x''), y) -> MINUS(x'', y)
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
three new Dependency Pairs are created:
IF(false, s(x''), y) -> MINUS(x'', y)
IF(false, s(x''''), 0) -> MINUS(x'''', 0)
IF(false, s(s(x'''')), s(0)) -> MINUS(s(x''''), s(0))
IF(false, s(s(x'''')), s(s(y'''))) -> MINUS(s(x''''), s(s(y''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Polynomial Ordering
IF(false, s(s(x'''')), s(s(y'''))) -> MINUS(s(x''''), s(s(y''')))
MINUS(s(s(x')), s(s(y'))) -> IF(le(x', y'), s(s(x')), s(s(y')))
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
IF(false, s(s(x'''')), s(s(y'''))) -> MINUS(s(x''''), s(s(y''')))
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
POL(0) = 0 POL(false) = 0 POL(MINUS(x1, x2)) = x1 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(le(x1, x2)) = 0 POL(IF(x1, x2, x3)) = x2 POL(p(x1)) = 1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Dependency Graph
MINUS(s(s(x')), s(s(y'))) -> IF(le(x', y'), s(s(x')), s(s(y')))
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Polynomial Ordering
IF(false, s(s(x'''')), s(0)) -> MINUS(s(x''''), s(0))
MINUS(s(s(x')), s(0)) -> IF(false, s(s(x')), s(0))
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
IF(false, s(s(x'''')), s(0)) -> MINUS(s(x''''), s(0))
POL(0) = 0 POL(false) = 0 POL(MINUS(x1, x2)) = x1 POL(s(x1)) = 1 + x1 POL(IF(x1, x2, x3)) = x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 13
↳Dependency Graph
MINUS(s(s(x')), s(0)) -> IF(false, s(s(x')), s(0))
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 11
↳Polynomial Ordering
IF(false, s(x''''), 0) -> MINUS(x'''', 0)
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
IF(false, s(x''''), 0) -> MINUS(x'''', 0)
POL(0) = 0 POL(false) = 0 POL(MINUS(x1, x2)) = x1 POL(s(x1)) = 1 + x1 POL(IF(x1, x2, x3)) = x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 14
↳Dependency Graph
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost