Term Rewriting System R:
[x, y]
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

P(p(s(x))) -> P(x)
LE(p(s(x)), x) -> LE(x, x)
LE(s(x), s(y)) -> LE(x, y)
MINUS(x, y) -> IF(le(x, y), x, y)
MINUS(x, y) -> LE(x, y)
IF(false, x, y) -> MINUS(p(x), y)
IF(false, x, y) -> P(x)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
Remaining


Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)


Rules:


p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

LE(s(x), s(y)) -> LE(x, y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Remaining


Dependency Pair:


Rules:


p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

IF(false, x, y) -> MINUS(p(x), y)
MINUS(x, y) -> IF(le(x, y), x, y)


Rules:


p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:01 minutes