R
↳Dependency Pair Analysis
FUNCTION(p, s(s(x)), dummy, dummy2) -> FUNCTION(p, s(x), x, x)
FUNCTION(plus, dummy, x, y) -> FUNCTION(if, function(iszero, x, x, x), x, y)
FUNCTION(plus, dummy, x, y) -> FUNCTION(iszero, x, x, x)
FUNCTION(if, false, x, y) -> FUNCTION(plus, function(third, x, y, y), function(p, x, x, y), s(y))
FUNCTION(if, false, x, y) -> FUNCTION(third, x, y, y)
FUNCTION(if, false, x, y) -> FUNCTION(p, x, x, y)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
→DP Problem 2
↳Rw
FUNCTION(p, s(s(x)), dummy, dummy2) -> FUNCTION(p, s(x), x, x)
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
one new Dependency Pair is created:
FUNCTION(p, s(s(x)), dummy, dummy2) -> FUNCTION(p, s(x), x, x)
FUNCTION(p, s(s(x'')), s(x''), s(x'')) -> FUNCTION(p, s(x''), x'', x'')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Rw
FUNCTION(p, s(s(x'')), s(x''), s(x'')) -> FUNCTION(p, s(x''), x'', x'')
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
one new Dependency Pair is created:
FUNCTION(p, s(s(x'')), s(x''), s(x'')) -> FUNCTION(p, s(x''), x'', x'')
FUNCTION(p, s(s(s(x'''''))), s(s(x''''')), s(s(x'''''))) -> FUNCTION(p, s(s(x''''')), s(x'''''), s(x'''''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Rw
FUNCTION(p, s(s(s(x'''''))), s(s(x''''')), s(s(x'''''))) -> FUNCTION(p, s(s(x''''')), s(x'''''), s(x'''''))
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
FUNCTION(p, s(s(s(x'''''))), s(s(x''''')), s(s(x'''''))) -> FUNCTION(p, s(s(x''''')), s(x'''''), s(x'''''))
POL(FUNCTION(x1, x2, x3, x4)) = 1 + x3 POL(s(x1)) = 1 + x1 POL(p) = 1
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Rw
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Rewriting Transformation
FUNCTION(if, false, x, y) -> FUNCTION(plus, function(third, x, y, y), function(p, x, x, y), s(y))
FUNCTION(plus, dummy, x, y) -> FUNCTION(if, function(iszero, x, x, x), x, y)
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
one new Dependency Pair is created:
FUNCTION(if, false, x, y) -> FUNCTION(plus, function(third, x, y, y), function(p, x, x, y), s(y))
FUNCTION(if, false, x, y) -> FUNCTION(plus, y, function(p, x, x, y), s(y))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Rw
→DP Problem 6
↳Narrowing Transformation
FUNCTION(if, false, x, y) -> FUNCTION(plus, y, function(p, x, x, y), s(y))
FUNCTION(plus, dummy, x, y) -> FUNCTION(if, function(iszero, x, x, x), x, y)
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
two new Dependency Pairs are created:
FUNCTION(plus, dummy, x, y) -> FUNCTION(if, function(iszero, x, x, x), x, y)
FUNCTION(plus, dummy, 0, y) -> FUNCTION(if, true, 0, y)
FUNCTION(plus, dummy, s(x''), y) -> FUNCTION(if, false, s(x''), y)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Rw
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
FUNCTION(plus, dummy, s(x''), y) -> FUNCTION(if, false, s(x''), y)
FUNCTION(if, false, x, y) -> FUNCTION(plus, y, function(p, x, x, y), s(y))
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
three new Dependency Pairs are created:
FUNCTION(if, false, x, y) -> FUNCTION(plus, y, function(p, x, x, y), s(y))
FUNCTION(if, false, 0, y') -> FUNCTION(plus, y', 0, s(y'))
FUNCTION(if, false, s(0), y') -> FUNCTION(plus, y', 0, s(y'))
FUNCTION(if, false, s(s(x'')), y') -> FUNCTION(plus, y', s(function(p, s(x''), x'', x'')), s(y'))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Rw
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Instantiation Transformation
FUNCTION(if, false, s(s(x'')), y') -> FUNCTION(plus, y', s(function(p, s(x''), x'', x'')), s(y'))
FUNCTION(plus, dummy, s(x''), y) -> FUNCTION(if, false, s(x''), y)
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
one new Dependency Pair is created:
FUNCTION(plus, dummy, s(x''), y) -> FUNCTION(if, false, s(x''), y)
FUNCTION(plus, dummy', s(x'''), s(dummy')) -> FUNCTION(if, false, s(x'''), s(dummy'))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Rw
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Instantiation Transformation
FUNCTION(plus, dummy', s(x'''), s(dummy')) -> FUNCTION(if, false, s(x'''), s(dummy'))
FUNCTION(if, false, s(s(x'')), y') -> FUNCTION(plus, y', s(function(p, s(x''), x'', x'')), s(y'))
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
one new Dependency Pair is created:
FUNCTION(if, false, s(s(x'')), y') -> FUNCTION(plus, y', s(function(p, s(x''), x'', x'')), s(y'))
FUNCTION(if, false, s(s(x''')), s(dummy''')) -> FUNCTION(plus, s(dummy'''), s(function(p, s(x'''), x''', x''')), s(s(dummy''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Rw
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Instantiation Transformation
FUNCTION(if, false, s(s(x''')), s(dummy''')) -> FUNCTION(plus, s(dummy'''), s(function(p, s(x'''), x''', x''')), s(s(dummy''')))
FUNCTION(plus, dummy', s(x'''), s(dummy')) -> FUNCTION(if, false, s(x'''), s(dummy'))
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
one new Dependency Pair is created:
FUNCTION(plus, dummy', s(x'''), s(dummy')) -> FUNCTION(if, false, s(x'''), s(dummy'))
FUNCTION(plus, s(dummy'''''), s(x''''), s(s(dummy'''''))) -> FUNCTION(if, false, s(x''''), s(s(dummy''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Rw
→DP Problem 6
↳Nar
...
→DP Problem 11
↳Instantiation Transformation
FUNCTION(plus, s(dummy'''''), s(x''''), s(s(dummy'''''))) -> FUNCTION(if, false, s(x''''), s(s(dummy''''')))
FUNCTION(if, false, s(s(x''')), s(dummy''')) -> FUNCTION(plus, s(dummy'''), s(function(p, s(x'''), x''', x''')), s(s(dummy''')))
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
one new Dependency Pair is created:
FUNCTION(if, false, s(s(x''')), s(dummy''')) -> FUNCTION(plus, s(dummy'''), s(function(p, s(x'''), x''', x''')), s(s(dummy''')))
FUNCTION(if, false, s(s(x'''')), s(s(dummy'''''''))) -> FUNCTION(plus, s(s(dummy''''''')), s(function(p, s(x''''), x'''', x'''')), s(s(s(dummy'''''''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Rw
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Instantiation Transformation
FUNCTION(if, false, s(s(x'''')), s(s(dummy'''''''))) -> FUNCTION(plus, s(s(dummy''''''')), s(function(p, s(x''''), x'''', x'''')), s(s(s(dummy'''''''))))
FUNCTION(plus, s(dummy'''''), s(x''''), s(s(dummy'''''))) -> FUNCTION(if, false, s(x''''), s(s(dummy''''')))
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
one new Dependency Pair is created:
FUNCTION(plus, s(dummy'''''), s(x''''), s(s(dummy'''''))) -> FUNCTION(if, false, s(x''''), s(s(dummy''''')))
FUNCTION(plus, s(s(dummy''''''''')), s(x'''''), s(s(s(dummy''''''''')))) -> FUNCTION(if, false, s(x'''''), s(s(s(dummy'''''''''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Rw
→DP Problem 6
↳Nar
...
→DP Problem 13
↳Instantiation Transformation
FUNCTION(plus, s(s(dummy''''''''')), s(x'''''), s(s(s(dummy''''''''')))) -> FUNCTION(if, false, s(x'''''), s(s(s(dummy'''''''''))))
FUNCTION(if, false, s(s(x'''')), s(s(dummy'''''''))) -> FUNCTION(plus, s(s(dummy''''''')), s(function(p, s(x''''), x'''', x'''')), s(s(s(dummy'''''''))))
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
one new Dependency Pair is created:
FUNCTION(if, false, s(s(x'''')), s(s(dummy'''''''))) -> FUNCTION(plus, s(s(dummy''''''')), s(function(p, s(x''''), x'''', x'''')), s(s(s(dummy'''''''))))
FUNCTION(if, false, s(s(x''''')), s(s(s(dummy''''''''''')))) -> FUNCTION(plus, s(s(s(dummy'''''''''''))), s(function(p, s(x'''''), x''''', x''''')), s(s(s(s(dummy''''''''''')))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Rw
→DP Problem 6
↳Nar
...
→DP Problem 14
↳Instantiation Transformation
FUNCTION(if, false, s(s(x''''')), s(s(s(dummy''''''''''')))) -> FUNCTION(plus, s(s(s(dummy'''''''''''))), s(function(p, s(x'''''), x''''', x''''')), s(s(s(s(dummy''''''''''')))))
FUNCTION(plus, s(s(dummy''''''''')), s(x'''''), s(s(s(dummy''''''''')))) -> FUNCTION(if, false, s(x'''''), s(s(s(dummy'''''''''))))
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost
one new Dependency Pair is created:
FUNCTION(plus, s(s(dummy''''''''')), s(x'''''), s(s(s(dummy''''''''')))) -> FUNCTION(if, false, s(x'''''), s(s(s(dummy'''''''''))))
FUNCTION(plus, s(s(s(dummy'''''''''''''))), s(x''''''), s(s(s(s(dummy'''''''''''''))))) -> FUNCTION(if, false, s(x''''''), s(s(s(s(dummy''''''''''''')))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Rw
→DP Problem 6
↳Nar
...
→DP Problem 15
↳Remaining Obligation(s)
FUNCTION(plus, s(s(s(dummy'''''''''''''))), s(x''''''), s(s(s(s(dummy'''''''''''''))))) -> FUNCTION(if, false, s(x''''''), s(s(s(s(dummy''''''''''''')))))
FUNCTION(if, false, s(s(x''''')), s(s(s(dummy''''''''''')))) -> FUNCTION(plus, s(s(s(dummy'''''''''''))), s(function(p, s(x'''''), x''''', x''''')), s(s(s(s(dummy''''''''''')))))
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z
innermost