Term Rewriting System R:
[x, y]
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

GE(s(x), s(y)) -> GE(x, y)
MINUS(s(x), s(y)) -> MINUS(x, y)
DIV(x, y) -> IFY(ge(y, s(0)), x, y)
DIV(x, y) -> GE(y, s(0))
IFY(true, x, y) -> IF(ge(x, y), x, y)
IFY(true, x, y) -> GE(x, y)
IF(true, x, y) -> DIV(minus(x, y), y)
IF(true, x, y) -> MINUS(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

GE(s(x), s(y)) -> GE(x, y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

GE(s(x), s(y)) -> GE(x, y)
one new Dependency Pair is created:

GE(s(s(x'')), s(s(y''))) -> GE(s(x''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

GE(s(s(x'')), s(s(y''))) -> GE(s(x''), s(y''))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

GE(s(s(x'')), s(s(y''))) -> GE(s(x''), s(y''))
one new Dependency Pair is created:

GE(s(s(s(x''''))), s(s(s(y'''')))) -> GE(s(s(x'''')), s(s(y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

GE(s(s(s(x''''))), s(s(s(y'''')))) -> GE(s(s(x'''')), s(s(y'''')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

GE(s(s(s(x''''))), s(s(s(y'''')))) -> GE(s(s(x'''')), s(s(y'''')))


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(GE(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
GE(x1, x2) -> GE(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(x), s(y)) -> MINUS(x, y)
one new Dependency Pair is created:

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
one new Dependency Pair is created:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
FwdInst
             ...
               →DP Problem 8
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(MINUS(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
FwdInst
             ...
               →DP Problem 9
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Narrowing Transformation


Dependency Pairs:

IF(true, x, y) -> DIV(minus(x, y), y)
IFY(true, x, y) -> IF(ge(x, y), x, y)
DIV(x, y) -> IFY(ge(y, s(0)), x, y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

DIV(x, y) -> IFY(ge(y, s(0)), x, y)
two new Dependency Pairs are created:

DIV(x, 0) -> IFY(false, x, 0)
DIV(x, s(x'')) -> IFY(ge(x'', 0), x, s(x''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rewriting Transformation


Dependency Pairs:

IFY(true, x, y) -> IF(ge(x, y), x, y)
DIV(x, s(x'')) -> IFY(ge(x'', 0), x, s(x''))
IF(true, x, y) -> DIV(minus(x, y), y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

DIV(x, s(x'')) -> IFY(ge(x'', 0), x, s(x''))
one new Dependency Pair is created:

DIV(x, s(x'')) -> IFY(true, x, s(x''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 11
Narrowing Transformation


Dependency Pairs:

DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, x, y) -> DIV(minus(x, y), y)
IFY(true, x, y) -> IF(ge(x, y), x, y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFY(true, x, y) -> IF(ge(x, y), x, y)
three new Dependency Pairs are created:

IFY(true, x'', 0) -> IF(true, x'', 0)
IFY(true, 0, s(x'')) -> IF(false, 0, s(x''))
IFY(true, s(x''), s(y'')) -> IF(ge(x'', y''), s(x''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 12
Narrowing Transformation


Dependency Pairs:

IF(true, x, y) -> DIV(minus(x, y), y)
IFY(true, s(x''), s(y'')) -> IF(ge(x'', y''), s(x''), s(y''))
DIV(x, s(x'')) -> IFY(true, x, s(x''))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFY(true, s(x''), s(y'')) -> IF(ge(x'', y''), s(x''), s(y''))
three new Dependency Pairs are created:

IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
IFY(true, s(0), s(s(x'))) -> IF(false, s(0), s(s(x')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 13
Instantiation Transformation


Dependency Pairs:

IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, x, y) -> DIV(minus(x, y), y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IF(true, x, y) -> DIV(minus(x, y), y)
two new Dependency Pairs are created:

IF(true, s(x'''''), s(0)) -> DIV(minus(s(x'''''), s(0)), s(0))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 14
Rewriting Transformation


Dependency Pairs:

IF(true, s(x'''''), s(0)) -> DIV(minus(s(x'''''), s(0)), s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(x'''''), s(0)) -> DIV(minus(s(x'''''), s(0)), s(0))
one new Dependency Pair is created:

IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 15
Rewriting Transformation


Dependency Pairs:

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))
one new Dependency Pair is created:

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 16
Rewriting Transformation


Dependency Pairs:

IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))
one new Dependency Pair is created:

IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 17
Rewriting Transformation


Dependency Pairs:

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))
one new Dependency Pair is created:

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 18
Argument Filtering and Ordering


Dependency Pairs:

IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))


The following usable rules for innermost can be oriented:

ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(IFY(x1, x2, x3))=  x1 + x2 + x3  
  POL(0)=  0  
  POL(false)=  0  
  POL(DIV(x1, x2))=  1 + x1 + x2  
  POL(true)=  0  
  POL(s(x1))=  1 + x1  
  POL(ge)=  0  
  POL(IF(x1, x2, x3))=  x1 + x2 + x3  

resulting in one new DP problem.
Used Argument Filtering System:
DIV(x1, x2) -> DIV(x1, x2)
IFY(x1, x2, x3) -> IFY(x1, x2, x3)
s(x1) -> s(x1)
IF(x1, x2, x3) -> IF(x1, x2, x3)
ge(x1, x2) -> ge
minus(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 19
Dependency Graph


Dependency Pairs:

IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes