Term Rewriting System R:
[x, y]
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

GE(s(x), s(y)) -> GE(x, y)
MINUS(s(x), s(y)) -> MINUS(x, y)
DIV(x, y) -> IFY(ge(y, s(0)), x, y)
DIV(x, y) -> GE(y, s(0))
IFY(true, x, y) -> IF(ge(x, y), x, y)
IFY(true, x, y) -> GE(x, y)
IF(true, x, y) -> DIV(minus(x, y), y)
IF(true, x, y) -> MINUS(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:

GE(s(x), s(y)) -> GE(x, y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

GE(s(x), s(y)) -> GE(x, y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
GE(x1, x2) -> GE(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

MINUS(s(x), s(y)) -> MINUS(x, y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

IF(true, x, y) -> DIV(minus(x, y), y)
IFY(true, x, y) -> IF(ge(x, y), x, y)
DIV(x, y) -> IFY(ge(y, s(0)), x, y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:00 minutes