Term Rewriting System R:
[x, y]
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

GE(s(x), s(y)) -> GE(x, y)
MINUS(s(x), s(y)) -> MINUS(x, y)
DIV(x, y) -> IFY(ge(y, s(0)), x, y)
DIV(x, y) -> GE(y, s(0))
IFY(true, x, y) -> IF(ge(x, y), x, y)
IFY(true, x, y) -> GE(x, y)
IF(true, x, y) -> DIV(minus(x, y), y)
IF(true, x, y) -> MINUS(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

GE(s(x), s(y)) -> GE(x, y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

GE(s(x), s(y)) -> GE(x, y)
one new Dependency Pair is created:

GE(s(s(x'')), s(s(y''))) -> GE(s(x''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

GE(s(s(x'')), s(s(y''))) -> GE(s(x''), s(y''))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

GE(s(s(x'')), s(s(y''))) -> GE(s(x''), s(y''))
one new Dependency Pair is created:

GE(s(s(s(x''''))), s(s(s(y'''')))) -> GE(s(s(x'''')), s(s(y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

GE(s(s(s(x''''))), s(s(s(y'''')))) -> GE(s(s(x'''')), s(s(y'''')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

GE(s(s(s(x''''))), s(s(s(y'''')))) -> GE(s(s(x'''')), s(s(y'''')))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
GE(x1, x2) -> GE(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(x), s(y)) -> MINUS(x, y)
one new Dependency Pair is created:

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
one new Dependency Pair is created:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
FwdInst
             ...
               →DP Problem 8
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
FwdInst
             ...
               →DP Problem 9
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Narrowing Transformation


Dependency Pairs:

IF(true, x, y) -> DIV(minus(x, y), y)
IFY(true, x, y) -> IF(ge(x, y), x, y)
DIV(x, y) -> IFY(ge(y, s(0)), x, y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

DIV(x, y) -> IFY(ge(y, s(0)), x, y)
two new Dependency Pairs are created:

DIV(x, 0) -> IFY(false, x, 0)
DIV(x, s(x'')) -> IFY(ge(x'', 0), x, s(x''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rewriting Transformation


Dependency Pairs:

IFY(true, x, y) -> IF(ge(x, y), x, y)
DIV(x, s(x'')) -> IFY(ge(x'', 0), x, s(x''))
IF(true, x, y) -> DIV(minus(x, y), y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

DIV(x, s(x'')) -> IFY(ge(x'', 0), x, s(x''))
one new Dependency Pair is created:

DIV(x, s(x'')) -> IFY(true, x, s(x''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 11
Narrowing Transformation


Dependency Pairs:

DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, x, y) -> DIV(minus(x, y), y)
IFY(true, x, y) -> IF(ge(x, y), x, y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFY(true, x, y) -> IF(ge(x, y), x, y)
three new Dependency Pairs are created:

IFY(true, x'', 0) -> IF(true, x'', 0)
IFY(true, 0, s(x'')) -> IF(false, 0, s(x''))
IFY(true, s(x''), s(y'')) -> IF(ge(x'', y''), s(x''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 12
Narrowing Transformation


Dependency Pairs:

IF(true, x, y) -> DIV(minus(x, y), y)
IFY(true, s(x''), s(y'')) -> IF(ge(x'', y''), s(x''), s(y''))
DIV(x, s(x'')) -> IFY(true, x, s(x''))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFY(true, s(x''), s(y'')) -> IF(ge(x'', y''), s(x''), s(y''))
three new Dependency Pairs are created:

IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
IFY(true, s(0), s(s(x'))) -> IF(false, s(0), s(s(x')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 13
Instantiation Transformation


Dependency Pairs:

IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, x, y) -> DIV(minus(x, y), y)


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IF(true, x, y) -> DIV(minus(x, y), y)
two new Dependency Pairs are created:

IF(true, s(x'''''), s(0)) -> DIV(minus(s(x'''''), s(0)), s(0))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 14
Rewriting Transformation


Dependency Pairs:

IF(true, s(x'''''), s(0)) -> DIV(minus(s(x'''''), s(0)), s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(x'''''), s(0)) -> DIV(minus(s(x'''''), s(0)), s(0))
one new Dependency Pair is created:

IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 15
Rewriting Transformation


Dependency Pairs:

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))
one new Dependency Pair is created:

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 16
Rewriting Transformation


Dependency Pairs:

IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))
one new Dependency Pair is created:

IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 17
Rewriting Transformation


Dependency Pairs:

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))
one new Dependency Pair is created:

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 18
Narrowing Transformation


Dependency Pairs:

IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
three new Dependency Pairs are created:

IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
IFY(true, s(s(0)), s(s(s(x'')))) -> IF(false, s(s(0)), s(s(s(x''))))
IFY(true, s(s(s(x''))), s(s(s(y'')))) -> IF(ge(x'', y''), s(s(s(x''))), s(s(s(y''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 19
Narrowing Transformation


Dependency Pairs:

IFY(true, s(s(s(x''))), s(s(s(y'')))) -> IF(ge(x'', y''), s(s(s(x''))), s(s(s(y''))))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFY(true, s(s(s(x''))), s(s(s(y'')))) -> IF(ge(x'', y''), s(s(s(x''))), s(s(s(y''))))
three new Dependency Pairs are created:

IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IFY(true, s(s(s(0))), s(s(s(s(x'))))) -> IF(false, s(s(s(0))), s(s(s(s(x')))))
IFY(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> IF(ge(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 20
Narrowing Transformation


Dependency Pairs:

IFY(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> IF(ge(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFY(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> IF(ge(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))
three new Dependency Pairs are created:

IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IFY(true, s(s(s(s(0)))), s(s(s(s(s(x'')))))) -> IF(false, s(s(s(s(0)))), s(s(s(s(s(x''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 21
Instantiation Transformation


Dependency Pairs:

IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

DIV(x, s(x'')) -> IFY(true, x, s(x''))
two new Dependency Pairs are created:

DIV(x', s(0)) -> IFY(true, x', s(0))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 22
Instantiation Transformation


Dependency Pairs:

IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
four new Dependency Pairs are created:

IF(true, s(s(x'0'')), s(s(0))) -> DIV(minus(x'0'', 0), s(s(0)))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(s(x'''''), s(0)), s(s(s(0))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(s(x'''')), s(s(0))), s(s(s(s(0)))))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 24
Rewriting Transformation


Dependency Pairs:

IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(s(x'''''), s(0)), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(minus(x'0'', 0), s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(s(x'''')), s(s(0))), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(x'0'')), s(s(0))) -> DIV(minus(x'0'', 0), s(s(0)))
one new Dependency Pair is created:

IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 26
Rewriting Transformation


Dependency Pairs:

IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(s(x'''')), s(s(0))), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(s(x'''''), s(0)), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(s(x'''''), s(0)), s(s(s(0))))
one new Dependency Pair is created:

IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(x''''', 0), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 28
Rewriting Transformation


Dependency Pairs:

IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(s(x'''')), s(s(0))), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(x''''', 0), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(s(x'''')), s(s(0))), s(s(s(s(0)))))
one new Dependency Pair is created:

IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(x''''), s(0)), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 30
Rewriting Transformation


Dependency Pairs:

IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(x''''', 0), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(x''''), s(0)), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))
one new Dependency Pair is created:

IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(x'''')), s(s(y'''''))), s(s(s(s(s(y'''''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 32
Rewriting Transformation


Dependency Pairs:

IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(x''''), s(0)), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(x''''', 0), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(x'''')), s(s(y'''''))), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(x''''', 0), s(s(s(0))))
one new Dependency Pair is created:

IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 34
Rewriting Transformation


Dependency Pairs:

IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(x'''')), s(s(y'''''))), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(x''''), s(0)), s(s(s(s(0)))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(x''''), s(0)), s(s(s(s(0)))))
one new Dependency Pair is created:

IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(x'''', 0), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 36
Rewriting Transformation


Dependency Pairs:

IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(x'''', 0), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(x'''')), s(s(y'''''))), s(s(s(s(s(y'''''))))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(x'''')), s(s(y'''''))), s(s(s(s(s(y'''''))))))
one new Dependency Pair is created:

IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(x''''), s(y''''')), s(s(s(s(s(y'''''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 37
Rewriting Transformation


Dependency Pairs:

IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(x'''', 0), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(x''''), s(y''''')), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(x'''', 0), s(s(s(s(0)))))
one new Dependency Pair is created:

IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 38
Rewriting Transformation


Dependency Pairs:

IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(x''''), s(y''''')), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(x''''), s(y''''')), s(s(s(s(s(y'''''))))))
one new Dependency Pair is created:

IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(x'''', y'''''), s(s(s(s(s(y'''''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 39
Instantiation Transformation


Dependency Pairs:

IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(x'''', y'''''), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
four new Dependency Pairs are created:

DIV(x'', s(s(0))) -> IFY(true, x'', s(s(0)))
DIV(x'', s(s(s(0)))) -> IFY(true, x'', s(s(s(0))))
DIV(x'', s(s(s(s(0))))) -> IFY(true, x'', s(s(s(s(0)))))
DIV(x''', s(s(s(s(s(y''''''')))))) -> IFY(true, x''', s(s(s(s(s(y'''''''))))))

The transformation is resulting in four new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 40
Forward Instantiation Transformation


Dependency Pairs:

IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
DIV(x'', s(s(s(s(0))))) -> IFY(true, x'', s(s(s(s(0)))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

DIV(x'', s(s(s(s(0))))) -> IFY(true, x'', s(s(s(s(0)))))
one new Dependency Pair is created:

DIV(s(s(s(s(x'''')))), s(s(s(s(0))))) -> IFY(true, s(s(s(s(x'''')))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 44
Argument Filtering and Ordering


Dependency Pairs:

DIV(s(s(s(s(x'''')))), s(s(s(s(0))))) -> IFY(true, s(s(s(s(x'''')))), s(s(s(s(0)))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
DIV(x1, x2) -> x1
s(x1) -> s(x1)
IFY(x1, x2, x3) -> x2
IF(x1, x2, x3) -> x2


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 49
Dependency Graph


Dependency Pairs:

DIV(s(s(s(s(x'''')))), s(s(s(s(0))))) -> IFY(true, s(s(s(s(x'''')))), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 41
Forward Instantiation Transformation


Dependency Pairs:

IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
DIV(x'', s(s(s(0)))) -> IFY(true, x'', s(s(s(0))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

DIV(x'', s(s(s(0)))) -> IFY(true, x'', s(s(s(0))))
one new Dependency Pair is created:

DIV(s(s(s(x'''''))), s(s(s(0)))) -> IFY(true, s(s(s(x'''''))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 45
Argument Filtering and Ordering


Dependency Pairs:

DIV(s(s(s(x'''''))), s(s(s(0)))) -> IFY(true, s(s(s(x'''''))), s(s(s(0))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFY(x1, x2, x3) -> x2
s(x1) -> s(x1)
IF(x1, x2, x3) -> x2
DIV(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 50
Dependency Graph


Dependency Pairs:

DIV(s(s(s(x'''''))), s(s(s(0)))) -> IFY(true, s(s(s(x'''''))), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 42
Forward Instantiation Transformation


Dependency Pairs:

IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x'', s(s(0))) -> IFY(true, x'', s(s(0)))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

DIV(x'', s(s(0))) -> IFY(true, x'', s(s(0)))
one new Dependency Pair is created:

DIV(s(s(x'''')), s(s(0))) -> IFY(true, s(s(x'''')), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 46
Argument Filtering and Ordering


Dependency Pairs:

DIV(s(s(x'''')), s(s(0))) -> IFY(true, s(s(x'''')), s(s(0)))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFY(x1, x2, x3) -> x2
s(x1) -> s(x1)
IF(x1, x2, x3) -> x2
DIV(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 51
Dependency Graph


Dependency Pairs:

DIV(s(s(x'''')), s(s(0))) -> IFY(true, s(s(x'''')), s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 43
Forward Instantiation Transformation


Dependency Pairs:

IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
DIV(x''', s(s(s(s(s(y''''''')))))) -> IFY(true, x''', s(s(s(s(s(y'''''''))))))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(x'''', y'''''), s(s(s(s(s(y'''''))))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

DIV(x''', s(s(s(s(s(y''''''')))))) -> IFY(true, x''', s(s(s(s(s(y'''''''))))))
one new Dependency Pair is created:

DIV(s(s(s(s(s(x'''''))))), s(s(s(s(s(y'''''''')))))) -> IFY(true, s(s(s(s(s(x'''''))))), s(s(s(s(s(y''''''''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 47
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

DIV(s(s(s(s(s(x'''''))))), s(s(s(s(s(y'''''''')))))) -> IFY(true, s(s(s(s(s(x'''''))))), s(s(s(s(s(y''''''''))))))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(x'''', y'''''), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 23
Forward Instantiation Transformation


Dependency Pairs:

IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x', s(0)) -> IFY(true, x', s(0))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

DIV(x', s(0)) -> IFY(true, x', s(0))
one new Dependency Pair is created:

DIV(s(x'''''), s(0)) -> IFY(true, s(x'''''), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 25
Forward Instantiation Transformation


Dependency Pairs:

DIV(s(x'''''), s(0)) -> IFY(true, s(x'''''), s(0))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
one new Dependency Pair is created:

IF(true, s(s(x''''''')), s(0)) -> DIV(s(x'''''''), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 27
Forward Instantiation Transformation


Dependency Pairs:

IF(true, s(s(x''''''')), s(0)) -> DIV(s(x'''''''), s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(s(x'''''), s(0)) -> IFY(true, s(x'''''), s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
one new Dependency Pair is created:

IFY(true, s(s(x''''''''')), s(0)) -> IF(true, s(s(x''''''''')), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 29
Forward Instantiation Transformation


Dependency Pairs:

IFY(true, s(s(x''''''''')), s(0)) -> IF(true, s(s(x''''''''')), s(0))
DIV(s(x'''''), s(0)) -> IFY(true, s(x'''''), s(0))
IF(true, s(s(x''''''')), s(0)) -> DIV(s(x'''''''), s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

DIV(s(x'''''), s(0)) -> IFY(true, s(x'''''), s(0))
one new Dependency Pair is created:

DIV(s(s(x''''''''''')), s(0)) -> IFY(true, s(s(x''''''''''')), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 31
Forward Instantiation Transformation


Dependency Pairs:

DIV(s(s(x''''''''''')), s(0)) -> IFY(true, s(s(x''''''''''')), s(0))
IF(true, s(s(x''''''')), s(0)) -> DIV(s(x'''''''), s(0))
IFY(true, s(s(x''''''''')), s(0)) -> IF(true, s(s(x''''''''')), s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IF(true, s(s(x''''''')), s(0)) -> DIV(s(x'''''''), s(0))
one new Dependency Pair is created:

IF(true, s(s(s(x'''''''''''''))), s(0)) -> DIV(s(s(x''''''''''''')), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 33
Forward Instantiation Transformation


Dependency Pairs:

IF(true, s(s(s(x'''''''''''''))), s(0)) -> DIV(s(s(x''''''''''''')), s(0))
IFY(true, s(s(x''''''''')), s(0)) -> IF(true, s(s(x''''''''')), s(0))
DIV(s(s(x''''''''''')), s(0)) -> IFY(true, s(s(x''''''''''')), s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFY(true, s(s(x''''''''')), s(0)) -> IF(true, s(s(x''''''''')), s(0))
one new Dependency Pair is created:

IFY(true, s(s(s(x'''''''''''''''))), s(0)) -> IF(true, s(s(s(x'''''''''''''''))), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 35
Argument Filtering and Ordering


Dependency Pairs:

IFY(true, s(s(s(x'''''''''''''''))), s(0)) -> IF(true, s(s(s(x'''''''''''''''))), s(0))
DIV(s(s(x''''''''''')), s(0)) -> IFY(true, s(s(x''''''''''')), s(0))
IF(true, s(s(s(x'''''''''''''))), s(0)) -> DIV(s(s(x''''''''''''')), s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IF(true, s(s(s(x'''''''''''''))), s(0)) -> DIV(s(s(x''''''''''''')), s(0))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFY(x1, x2, x3) -> x2
s(x1) -> s(x1)
IF(x1, x2, x3) -> x2
DIV(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Rw
             ...
               →DP Problem 48
Dependency Graph


Dependency Pairs:

IFY(true, s(s(s(x'''''''''''''''))), s(0)) -> IF(true, s(s(s(x'''''''''''''''))), s(0))
DIV(s(s(x''''''''''')), s(0)) -> IFY(true, s(s(x''''''''''')), s(0))


Rules:


ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R could not be shown.
Duration:
0:04 minutes