R
↳Dependency Pair Analysis
GE(s(x), s(y)) -> GE(x, y)
MINUS(s(x), s(y)) -> MINUS(x, y)
DIV(x, y) -> IFY(ge(y, s(0)), x, y)
DIV(x, y) -> GE(y, s(0))
IFY(true, x, y) -> IF(ge(x, y), x, y)
IFY(true, x, y) -> GE(x, y)
IF(true, x, y) -> DIV(minus(x, y), y)
IF(true, x, y) -> MINUS(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
GE(s(x), s(y)) -> GE(x, y)
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
GE(s(x), s(y)) -> GE(x, y)
GE(s(s(x'')), s(s(y''))) -> GE(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
GE(s(s(x'')), s(s(y''))) -> GE(s(x''), s(y''))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
GE(s(s(x'')), s(s(y''))) -> GE(s(x''), s(y''))
GE(s(s(s(x''''))), s(s(s(y'''')))) -> GE(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
GE(s(s(s(x''''))), s(s(s(y'''')))) -> GE(s(s(x'''')), s(s(y'''')))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
GE(s(s(s(x''''))), s(s(s(y'''')))) -> GE(s(s(x'''')), s(s(y'''')))
GE(x1, x2) -> GE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
MINUS(s(x), s(y)) -> MINUS(x, y)
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳Nar
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Narrowing Transformation
IF(true, x, y) -> DIV(minus(x, y), y)
IFY(true, x, y) -> IF(ge(x, y), x, y)
DIV(x, y) -> IFY(ge(y, s(0)), x, y)
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
two new Dependency Pairs are created:
DIV(x, y) -> IFY(ge(y, s(0)), x, y)
DIV(x, 0) -> IFY(false, x, 0)
DIV(x, s(x'')) -> IFY(ge(x'', 0), x, s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rewriting Transformation
IFY(true, x, y) -> IF(ge(x, y), x, y)
DIV(x, s(x'')) -> IFY(ge(x'', 0), x, s(x''))
IF(true, x, y) -> DIV(minus(x, y), y)
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
DIV(x, s(x'')) -> IFY(ge(x'', 0), x, s(x''))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 11
↳Narrowing Transformation
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, x, y) -> DIV(minus(x, y), y)
IFY(true, x, y) -> IF(ge(x, y), x, y)
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
three new Dependency Pairs are created:
IFY(true, x, y) -> IF(ge(x, y), x, y)
IFY(true, x'', 0) -> IF(true, x'', 0)
IFY(true, 0, s(x'')) -> IF(false, 0, s(x''))
IFY(true, s(x''), s(y'')) -> IF(ge(x'', y''), s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 12
↳Narrowing Transformation
IF(true, x, y) -> DIV(minus(x, y), y)
IFY(true, s(x''), s(y'')) -> IF(ge(x'', y''), s(x''), s(y''))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
three new Dependency Pairs are created:
IFY(true, s(x''), s(y'')) -> IF(ge(x'', y''), s(x''), s(y''))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
IFY(true, s(0), s(s(x'))) -> IF(false, s(0), s(s(x')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 13
↳Instantiation Transformation
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, x, y) -> DIV(minus(x, y), y)
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
two new Dependency Pairs are created:
IF(true, x, y) -> DIV(minus(x, y), y)
IF(true, s(x'''''), s(0)) -> DIV(minus(s(x'''''), s(0)), s(0))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 14
↳Rewriting Transformation
IF(true, s(x'''''), s(0)) -> DIV(minus(s(x'''''), s(0)), s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(x'''''), s(0)) -> DIV(minus(s(x'''''), s(0)), s(0))
IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 15
↳Rewriting Transformation
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(s(x'0')), s(s(y'''))), s(s(y''')))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 16
↳Rewriting Transformation
IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(x'''''), s(0)) -> DIV(minus(x''''', 0), s(0))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 17
↳Rewriting Transformation
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(s(x'0'), s(y''')), s(s(y''')))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 18
↳Narrowing Transformation
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
three new Dependency Pairs are created:
IFY(true, s(s(x')), s(s(y'))) -> IF(ge(x', y'), s(s(x')), s(s(y')))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
IFY(true, s(s(0)), s(s(s(x'')))) -> IF(false, s(s(0)), s(s(s(x''))))
IFY(true, s(s(s(x''))), s(s(s(y'')))) -> IF(ge(x'', y''), s(s(s(x''))), s(s(s(y''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 19
↳Narrowing Transformation
IFY(true, s(s(s(x''))), s(s(s(y'')))) -> IF(ge(x'', y''), s(s(s(x''))), s(s(s(y''))))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
three new Dependency Pairs are created:
IFY(true, s(s(s(x''))), s(s(s(y'')))) -> IF(ge(x'', y''), s(s(s(x''))), s(s(s(y''))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IFY(true, s(s(s(0))), s(s(s(s(x'))))) -> IF(false, s(s(s(0))), s(s(s(s(x')))))
IFY(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> IF(ge(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 20
↳Narrowing Transformation
IFY(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> IF(ge(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
three new Dependency Pairs are created:
IFY(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> IF(ge(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IFY(true, s(s(s(s(0)))), s(s(s(s(s(x'')))))) -> IF(false, s(s(s(s(0)))), s(s(s(s(s(x''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 21
↳Instantiation Transformation
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x, s(x'')) -> IFY(true, x, s(x''))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
two new Dependency Pairs are created:
DIV(x, s(x'')) -> IFY(true, x, s(x''))
DIV(x', s(0)) -> IFY(true, x', s(0))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 22
↳Instantiation Transformation
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
four new Dependency Pairs are created:
IF(true, s(s(x'0')), s(s(y'''))) -> DIV(minus(x'0', y'''), s(s(y''')))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(minus(x'0'', 0), s(s(0)))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(s(x'''''), s(0)), s(s(s(0))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(s(x'''')), s(s(0))), s(s(s(s(0)))))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 24
↳Rewriting Transformation
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(s(x'''''), s(0)), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(minus(x'0'', 0), s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(s(x'''')), s(s(0))), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(x'0'')), s(s(0))) -> DIV(minus(x'0'', 0), s(s(0)))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 26
↳Rewriting Transformation
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(s(x'''')), s(s(0))), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(s(x'''''), s(0)), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(s(x'''''), s(0)), s(s(s(0))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(x''''', 0), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 28
↳Rewriting Transformation
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(s(x'''')), s(s(0))), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(x''''', 0), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(s(x'''')), s(s(0))), s(s(s(s(0)))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(x''''), s(0)), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 30
↳Rewriting Transformation
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(x''''', 0), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(x''''), s(0)), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(s(x''''))), s(s(s(y''''')))), s(s(s(s(s(y'''''))))))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(x'''')), s(s(y'''''))), s(s(s(s(s(y'''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 32
↳Rewriting Transformation
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(x''''), s(0)), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(x''''', 0), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(x'''')), s(s(y'''''))), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(minus(x''''', 0), s(s(s(0))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 34
↳Rewriting Transformation
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(x'''')), s(s(y'''''))), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(x''''), s(0)), s(s(s(s(0)))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(s(x''''), s(0)), s(s(s(s(0)))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(x'''', 0), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 36
↳Rewriting Transformation
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(x'''', 0), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(x'''')), s(s(y'''''))), s(s(s(s(s(y'''''))))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(s(x'''')), s(s(y'''''))), s(s(s(s(s(y'''''))))))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(x''''), s(y''''')), s(s(s(s(s(y'''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 37
↳Rewriting Transformation
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(x'''', 0), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(x''''), s(y''''')), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(minus(x'''', 0), s(s(s(s(0)))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 38
↳Rewriting Transformation
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(x''''), s(y''''')), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(s(x''''), s(y''''')), s(s(s(s(s(y'''''))))))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(x'''', y'''''), s(s(s(s(s(y'''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 39
↳Instantiation Transformation
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(x'''', y'''''), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
four new Dependency Pairs are created:
DIV(x', s(s(y'''''))) -> IFY(true, x', s(s(y''''')))
DIV(x'', s(s(0))) -> IFY(true, x'', s(s(0)))
DIV(x'', s(s(s(0)))) -> IFY(true, x'', s(s(s(0))))
DIV(x'', s(s(s(s(0))))) -> IFY(true, x'', s(s(s(s(0)))))
DIV(x''', s(s(s(s(s(y''''''')))))) -> IFY(true, x''', s(s(s(s(s(y'''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 40
↳Forward Instantiation Transformation
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
DIV(x'', s(s(s(s(0))))) -> IFY(true, x'', s(s(s(s(0)))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
DIV(x'', s(s(s(s(0))))) -> IFY(true, x'', s(s(s(s(0)))))
DIV(s(s(s(s(x'''')))), s(s(s(s(0))))) -> IFY(true, s(s(s(s(x'''')))), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 44
↳Argument Filtering and Ordering
DIV(s(s(s(s(x'''')))), s(s(s(s(0))))) -> IFY(true, s(s(s(s(x'''')))), s(s(s(s(0)))))
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
IF(true, s(s(s(s(x'''')))), s(s(s(s(0))))) -> DIV(x'''', s(s(s(s(0)))))
DIV(x1, x2) -> x1
s(x1) -> s(x1)
IFY(x1, x2, x3) -> x2
IF(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 49
↳Dependency Graph
DIV(s(s(s(s(x'''')))), s(s(s(s(0))))) -> IFY(true, s(s(s(s(x'''')))), s(s(s(s(0)))))
IFY(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> IF(true, s(s(s(s(x'')))), s(s(s(s(0)))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 41
↳Forward Instantiation Transformation
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
DIV(x'', s(s(s(0)))) -> IFY(true, x'', s(s(s(0))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
DIV(x'', s(s(s(0)))) -> IFY(true, x'', s(s(s(0))))
DIV(s(s(s(x'''''))), s(s(s(0)))) -> IFY(true, s(s(s(x'''''))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 45
↳Argument Filtering and Ordering
DIV(s(s(s(x'''''))), s(s(s(0)))) -> IFY(true, s(s(s(x'''''))), s(s(s(0))))
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
IF(true, s(s(s(x'''''))), s(s(s(0)))) -> DIV(x''''', s(s(s(0))))
IFY(x1, x2, x3) -> x2
s(x1) -> s(x1)
IF(x1, x2, x3) -> x2
DIV(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 50
↳Dependency Graph
DIV(s(s(s(x'''''))), s(s(s(0)))) -> IFY(true, s(s(s(x'''''))), s(s(s(0))))
IFY(true, s(s(s(x'''))), s(s(s(0)))) -> IF(true, s(s(s(x'''))), s(s(s(0))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 42
↳Forward Instantiation Transformation
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
DIV(x'', s(s(0))) -> IFY(true, x'', s(s(0)))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
DIV(x'', s(s(0))) -> IFY(true, x'', s(s(0)))
DIV(s(s(x'''')), s(s(0))) -> IFY(true, s(s(x'''')), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 46
↳Argument Filtering and Ordering
DIV(s(s(x'''')), s(s(0))) -> IFY(true, s(s(x'''')), s(s(0)))
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
IF(true, s(s(x'0'')), s(s(0))) -> DIV(x'0'', s(s(0)))
IFY(x1, x2, x3) -> x2
s(x1) -> s(x1)
IF(x1, x2, x3) -> x2
DIV(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 51
↳Dependency Graph
DIV(s(s(x'''')), s(s(0))) -> IFY(true, s(s(x'''')), s(s(0)))
IFY(true, s(s(x'')), s(s(0))) -> IF(true, s(s(x'')), s(s(0)))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 43
↳Forward Instantiation Transformation
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
DIV(x''', s(s(s(s(s(y''''''')))))) -> IFY(true, x''', s(s(s(s(s(y'''''''))))))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(x'''', y'''''), s(s(s(s(s(y'''''))))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
DIV(x''', s(s(s(s(s(y''''''')))))) -> IFY(true, x''', s(s(s(s(s(y'''''''))))))
DIV(s(s(s(s(s(x'''''))))), s(s(s(s(s(y'''''''')))))) -> IFY(true, s(s(s(s(s(x'''''))))), s(s(s(s(s(y''''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 47
↳Remaining Obligation(s)
DIV(s(s(s(s(s(x'''''))))), s(s(s(s(s(y'''''''')))))) -> IFY(true, s(s(s(s(s(x'''''))))), s(s(s(s(s(y''''''''))))))
IF(true, s(s(s(s(s(x''''))))), s(s(s(s(s(y''''')))))) -> DIV(minus(x'''', y'''''), s(s(s(s(s(y'''''))))))
IFY(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(ge(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 23
↳Forward Instantiation Transformation
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(x', s(0)) -> IFY(true, x', s(0))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
DIV(x', s(0)) -> IFY(true, x', s(0))
DIV(s(x'''''), s(0)) -> IFY(true, s(x'''''), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 25
↳Forward Instantiation Transformation
DIV(s(x'''''), s(0)) -> IFY(true, s(x'''''), s(0))
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(x'''''), s(0)) -> DIV(x''''', s(0))
IF(true, s(s(x''''''')), s(0)) -> DIV(s(x'''''''), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 27
↳Forward Instantiation Transformation
IF(true, s(s(x''''''')), s(0)) -> DIV(s(x'''''''), s(0))
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
DIV(s(x'''''), s(0)) -> IFY(true, s(x'''''), s(0))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IFY(true, s(x'''), s(0)) -> IF(true, s(x'''), s(0))
IFY(true, s(s(x''''''''')), s(0)) -> IF(true, s(s(x''''''''')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 29
↳Forward Instantiation Transformation
IFY(true, s(s(x''''''''')), s(0)) -> IF(true, s(s(x''''''''')), s(0))
DIV(s(x'''''), s(0)) -> IFY(true, s(x'''''), s(0))
IF(true, s(s(x''''''')), s(0)) -> DIV(s(x'''''''), s(0))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
DIV(s(x'''''), s(0)) -> IFY(true, s(x'''''), s(0))
DIV(s(s(x''''''''''')), s(0)) -> IFY(true, s(s(x''''''''''')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 31
↳Forward Instantiation Transformation
DIV(s(s(x''''''''''')), s(0)) -> IFY(true, s(s(x''''''''''')), s(0))
IF(true, s(s(x''''''')), s(0)) -> DIV(s(x'''''''), s(0))
IFY(true, s(s(x''''''''')), s(0)) -> IF(true, s(s(x''''''''')), s(0))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IF(true, s(s(x''''''')), s(0)) -> DIV(s(x'''''''), s(0))
IF(true, s(s(s(x'''''''''''''))), s(0)) -> DIV(s(s(x''''''''''''')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 33
↳Forward Instantiation Transformation
IF(true, s(s(s(x'''''''''''''))), s(0)) -> DIV(s(s(x''''''''''''')), s(0))
IFY(true, s(s(x''''''''')), s(0)) -> IF(true, s(s(x''''''''')), s(0))
DIV(s(s(x''''''''''')), s(0)) -> IFY(true, s(s(x''''''''''')), s(0))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
one new Dependency Pair is created:
IFY(true, s(s(x''''''''')), s(0)) -> IF(true, s(s(x''''''''')), s(0))
IFY(true, s(s(s(x'''''''''''''''))), s(0)) -> IF(true, s(s(s(x'''''''''''''''))), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 35
↳Argument Filtering and Ordering
IFY(true, s(s(s(x'''''''''''''''))), s(0)) -> IF(true, s(s(s(x'''''''''''''''))), s(0))
DIV(s(s(x''''''''''')), s(0)) -> IFY(true, s(s(x''''''''''')), s(0))
IF(true, s(s(s(x'''''''''''''))), s(0)) -> DIV(s(s(x''''''''''''')), s(0))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost
IF(true, s(s(s(x'''''''''''''))), s(0)) -> DIV(s(s(x''''''''''''')), s(0))
IFY(x1, x2, x3) -> x2
s(x1) -> s(x1)
IF(x1, x2, x3) -> x2
DIV(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 48
↳Dependency Graph
IFY(true, s(s(s(x'''''''''''''''))), s(0)) -> IF(true, s(s(s(x'''''''''''''''))), s(0))
DIV(s(s(x''''''''''')), s(0)) -> IFY(true, s(s(x''''''''''')), s(0))
ge(x, 0) -> true
ge(0, s(x)) -> false
ge(s(x), s(y)) -> ge(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
div(x, y) -> ify(ge(y, s(0)), x, y)
ify(false, x, y) -> divByZeroError
ify(true, x, y) -> if(ge(x, y), x, y)
if(false, x, y) -> 0
if(true, x, y) -> s(div(minus(x, y), y))
innermost