Term Rewriting System R:
[N, X, Y, Z]
terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

TERMS(N) -> SQR(N)
TERMS(N) -> TERMS(s(N))
SQR(s(X)) -> ADD(sqr(X), dbl(X))
SQR(s(X)) -> SQR(X)
SQR(s(X)) -> DBL(X)
DBL(s(X)) -> DBL(X)
ADD(s(X), Y) -> ADD(X, Y)
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
HALF(s(s(X))) -> HALF(X)

Furthermore, R contains six SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

ADD(s(X), Y) -> ADD(X, Y)


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ADD(s(X), Y) -> ADD(X, Y)
one new Dependency Pair is created:

ADD(s(s(X'')), Y'') -> ADD(s(X''), Y'')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 7
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

ADD(s(s(X'')), Y'') -> ADD(s(X''), Y'')


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ADD(s(s(X'')), Y'') -> ADD(s(X''), Y'')
one new Dependency Pair is created:

ADD(s(s(s(X''''))), Y'''') -> ADD(s(s(X'''')), Y'''')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 7
FwdInst
             ...
               →DP Problem 8
Polynomial Ordering
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

ADD(s(s(s(X''''))), Y'''') -> ADD(s(s(X'''')), Y'''')


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

ADD(s(s(s(X''''))), Y'''') -> ADD(s(s(X'''')), Y'''')


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(s(x1))=  1 + x1  
  POL(ADD(x1, x2))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 7
FwdInst
             ...
               →DP Problem 9
Dependency Graph
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Forward Instantiation Transformation
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

DBL(s(X)) -> DBL(X)


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

DBL(s(X)) -> DBL(X)
one new Dependency Pair is created:

DBL(s(s(X''))) -> DBL(s(X''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 10
Forward Instantiation Transformation
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

DBL(s(s(X''))) -> DBL(s(X''))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

DBL(s(s(X''))) -> DBL(s(X''))
one new Dependency Pair is created:

DBL(s(s(s(X'''')))) -> DBL(s(s(X'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 10
FwdInst
             ...
               →DP Problem 11
Polynomial Ordering
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

DBL(s(s(s(X'''')))) -> DBL(s(s(X'''')))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

DBL(s(s(s(X'''')))) -> DBL(s(s(X'''')))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(s(x1))=  1 + x1  
  POL(DBL(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 10
FwdInst
             ...
               →DP Problem 12
Dependency Graph
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Forward Instantiation Transformation
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
one new Dependency Pair is created:

FIRST(s(s(X'')), cons(Y, cons(Y'', Z''))) -> FIRST(s(X''), cons(Y'', Z''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
           →DP Problem 13
Forward Instantiation Transformation
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

FIRST(s(s(X'')), cons(Y, cons(Y'', Z''))) -> FIRST(s(X''), cons(Y'', Z''))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

FIRST(s(s(X'')), cons(Y, cons(Y'', Z''))) -> FIRST(s(X''), cons(Y'', Z''))
one new Dependency Pair is created:

FIRST(s(s(s(X''''))), cons(Y, cons(Y''0, cons(Y'''', Z'''')))) -> FIRST(s(s(X'''')), cons(Y''0, cons(Y'''', Z'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
           →DP Problem 13
FwdInst
             ...
               →DP Problem 14
Polynomial Ordering
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

FIRST(s(s(s(X''''))), cons(Y, cons(Y''0, cons(Y'''', Z'''')))) -> FIRST(s(s(X'''')), cons(Y''0, cons(Y'''', Z'''')))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

FIRST(s(s(s(X''''))), cons(Y, cons(Y''0, cons(Y'''', Z'''')))) -> FIRST(s(s(X'''')), cons(Y''0, cons(Y'''', Z'''')))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  0  
  POL(FIRST(x1, x2))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
           →DP Problem 13
FwdInst
             ...
               →DP Problem 15
Dependency Graph
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

HALF(s(s(X))) -> HALF(X)


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

HALF(s(s(X))) -> HALF(X)
one new Dependency Pair is created:

HALF(s(s(s(s(X''))))) -> HALF(s(s(X'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
           →DP Problem 16
Forward Instantiation Transformation
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

HALF(s(s(s(s(X''))))) -> HALF(s(s(X'')))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

HALF(s(s(s(s(X''))))) -> HALF(s(s(X'')))
one new Dependency Pair is created:

HALF(s(s(s(s(s(s(X''''))))))) -> HALF(s(s(s(s(X'''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
           →DP Problem 16
FwdInst
             ...
               →DP Problem 17
Polynomial Ordering
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:

HALF(s(s(s(s(s(s(X''''))))))) -> HALF(s(s(s(s(X'''')))))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

HALF(s(s(s(s(s(s(X''''))))))) -> HALF(s(s(s(s(X'''')))))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(HALF(x1))=  1 + x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
           →DP Problem 16
FwdInst
             ...
               →DP Problem 18
Dependency Graph
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst


Dependency Pair:


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
Forward Instantiation Transformation
       →DP Problem 6
Inst


Dependency Pair:

SQR(s(X)) -> SQR(X)


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

SQR(s(X)) -> SQR(X)
one new Dependency Pair is created:

SQR(s(s(X''))) -> SQR(s(X''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
           →DP Problem 19
Forward Instantiation Transformation
       →DP Problem 6
Inst


Dependency Pair:

SQR(s(s(X''))) -> SQR(s(X''))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

SQR(s(s(X''))) -> SQR(s(X''))
one new Dependency Pair is created:

SQR(s(s(s(X'''')))) -> SQR(s(s(X'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
           →DP Problem 19
FwdInst
             ...
               →DP Problem 20
Polynomial Ordering
       →DP Problem 6
Inst


Dependency Pair:

SQR(s(s(s(X'''')))) -> SQR(s(s(X'''')))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

SQR(s(s(s(X'''')))) -> SQR(s(s(X'''')))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(s(x1))=  1 + x1  
  POL(SQR(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
           →DP Problem 19
FwdInst
             ...
               →DP Problem 21
Dependency Graph
       →DP Problem 6
Inst


Dependency Pair:


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Instantiation Transformation


Dependency Pair:

TERMS(N) -> TERMS(s(N))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

TERMS(N) -> TERMS(s(N))
one new Dependency Pair is created:

TERMS(s(N'')) -> TERMS(s(s(N'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst
           →DP Problem 22
Instantiation Transformation


Dependency Pair:

TERMS(s(N'')) -> TERMS(s(s(N'')))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

TERMS(s(N'')) -> TERMS(s(s(N'')))
one new Dependency Pair is created:

TERMS(s(s(N''''))) -> TERMS(s(s(s(N''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst
           →DP Problem 22
Inst
             ...
               →DP Problem 23
Instantiation Transformation


Dependency Pair:

TERMS(s(s(N''''))) -> TERMS(s(s(s(N''''))))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

TERMS(s(s(N''''))) -> TERMS(s(s(s(N''''))))
one new Dependency Pair is created:

TERMS(s(s(s(N'''''')))) -> TERMS(s(s(s(s(N'''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst
           →DP Problem 22
Inst
             ...
               →DP Problem 24
Instantiation Transformation


Dependency Pair:

TERMS(s(s(s(N'''''')))) -> TERMS(s(s(s(s(N'''''')))))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

TERMS(s(s(s(N'''''')))) -> TERMS(s(s(s(s(N'''''')))))
one new Dependency Pair is created:

TERMS(s(s(s(s(N''''''''))))) -> TERMS(s(s(s(s(s(N''''''''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst
           →DP Problem 22
Inst
             ...
               →DP Problem 25
Instantiation Transformation


Dependency Pair:

TERMS(s(s(s(s(N''''''''))))) -> TERMS(s(s(s(s(s(N''''''''))))))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

TERMS(s(s(s(s(N''''''''))))) -> TERMS(s(s(s(s(s(N''''''''))))))
one new Dependency Pair is created:

TERMS(s(s(s(s(s(N'''''''''')))))) -> TERMS(s(s(s(s(s(s(N'''''''''')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
FwdInst
       →DP Problem 5
FwdInst
       →DP Problem 6
Inst
           →DP Problem 22
Inst
             ...
               →DP Problem 26
Remaining Obligation(s)




The following remains to be proven:
Dependency Pair:

TERMS(s(s(s(s(s(N'''''''''')))))) -> TERMS(s(s(s(s(s(s(N'''''''''')))))))


Rules:


terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:00 minutes