R
↳Dependency Pair Analysis
F(s(X)) -> F(X)
G(cons(0, Y)) -> G(Y)
H(cons(X, Y)) -> H(g(cons(X, Y)))
H(cons(X, Y)) -> G(cons(X, Y))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
F(s(X)) -> F(X)
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
innermost
one new Dependency Pair is created:
F(s(X)) -> F(X)
F(s(s(X''))) -> F(s(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
F(s(s(X''))) -> F(s(X''))
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
innermost
one new Dependency Pair is created:
F(s(s(X''))) -> F(s(X''))
F(s(s(s(X'''')))) -> F(s(s(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
F(s(s(s(X'''')))) -> F(s(s(X'''')))
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
innermost
F(s(s(s(X'''')))) -> F(s(s(X'''')))
POL(s(x1)) = 1 + x1 POL(F(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
G(cons(0, Y)) -> G(Y)
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
innermost
one new Dependency Pair is created:
G(cons(0, Y)) -> G(Y)
G(cons(0, cons(0, Y''))) -> G(cons(0, Y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
G(cons(0, cons(0, Y''))) -> G(cons(0, Y''))
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
innermost
one new Dependency Pair is created:
G(cons(0, cons(0, Y''))) -> G(cons(0, Y''))
G(cons(0, cons(0, cons(0, Y'''')))) -> G(cons(0, cons(0, Y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
→DP Problem 3
↳Nar
G(cons(0, cons(0, cons(0, Y'''')))) -> G(cons(0, cons(0, Y'''')))
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
innermost
G(cons(0, cons(0, cons(0, Y'''')))) -> G(cons(0, cons(0, Y'''')))
POL(0) = 0 POL(G(x1)) = 1 + x1 POL(cons(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳Nar
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Narrowing Transformation
H(cons(X, Y)) -> H(g(cons(X, Y)))
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
innermost
two new Dependency Pairs are created:
H(cons(X, Y)) -> H(g(cons(X, Y)))
H(cons(0, Y'')) -> H(g(Y''))
H(cons(s(X''), Y'')) -> H(s(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Narrowing Transformation
H(cons(0, Y'')) -> H(g(Y''))
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
innermost
two new Dependency Pairs are created:
H(cons(0, Y'')) -> H(g(Y''))
H(cons(0, cons(0, Y'))) -> H(g(Y'))
H(cons(0, cons(s(X'), Y'))) -> H(s(X'))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 11
↳Forward Instantiation Transformation
H(cons(0, cons(0, Y'))) -> H(g(Y'))
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
innermost
no new Dependency Pairs are created.
H(cons(0, cons(0, Y'))) -> H(g(Y'))