Term Rewriting System R:
[X, Y]
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(s(X)) -> F(X)
G(cons(0, Y)) -> G(Y)
H(cons(X, Y)) -> H(g(cons(X, Y)))
H(cons(X, Y)) -> G(cons(X, Y))

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

F(s(X)) -> F(X)


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(s(X)) -> F(X)
one new Dependency Pair is created:

F(s(s(X''))) -> F(s(X''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

F(s(s(X''))) -> F(s(X''))


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(s(s(X''))) -> F(s(X''))
one new Dependency Pair is created:

F(s(s(s(X'''')))) -> F(s(s(X'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

F(s(s(s(X'''')))) -> F(s(s(X'''')))


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

F(s(s(s(X'''')))) -> F(s(s(X'''')))


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pair:

G(cons(0, Y)) -> G(Y)


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

G(cons(0, Y)) -> G(Y)
one new Dependency Pair is created:

G(cons(0, cons(0, Y''))) -> G(cons(0, Y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pair:

G(cons(0, cons(0, Y''))) -> G(cons(0, Y''))


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

G(cons(0, cons(0, Y''))) -> G(cons(0, Y''))
one new Dependency Pair is created:

G(cons(0, cons(0, cons(0, Y'''')))) -> G(cons(0, cons(0, Y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
FwdInst
             ...
               →DP Problem 8
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pair:

G(cons(0, cons(0, cons(0, Y'''')))) -> G(cons(0, cons(0, Y'''')))


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

G(cons(0, cons(0, cons(0, Y'''')))) -> G(cons(0, cons(0, Y'''')))


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
G(x1) -> G(x1)
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
FwdInst
             ...
               →DP Problem 9
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Narrowing Transformation


Dependency Pair:

H(cons(X, Y)) -> H(g(cons(X, Y)))


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

H(cons(X, Y)) -> H(g(cons(X, Y)))
two new Dependency Pairs are created:

H(cons(0, Y'')) -> H(g(Y''))
H(cons(s(X''), Y'')) -> H(s(X''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Narrowing Transformation


Dependency Pair:

H(cons(0, Y'')) -> H(g(Y''))


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

H(cons(0, Y'')) -> H(g(Y''))
two new Dependency Pairs are created:

H(cons(0, cons(0, Y'))) -> H(g(Y'))
H(cons(0, cons(s(X'), Y'))) -> H(s(X'))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Nar
             ...
               →DP Problem 11
Forward Instantiation Transformation


Dependency Pair:

H(cons(0, cons(0, Y'))) -> H(g(Y'))


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

H(cons(0, cons(0, Y'))) -> H(g(Y'))
no new Dependency Pairs are created.
The transformation is resulting in no new DP problems.


Innermost Termination of R successfully shown.
Duration:
0:00 minutes