Term Rewriting System R:
[X, Y]
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(s(X)) -> F(X)
G(cons(0, Y)) -> G(Y)
H(cons(X, Y)) -> H(g(cons(X, Y)))
H(cons(X, Y)) -> G(cons(X, Y))

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
FwdInst


Dependency Pair:

F(s(X)) -> F(X)


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

F(s(X)) -> F(X)


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(s(x1))=  1 + x1  
  POL(F(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
FwdInst


Dependency Pair:


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
FwdInst


Dependency Pair:

G(cons(0, Y)) -> G(Y)


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

G(cons(0, Y)) -> G(Y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0)=  0  
  POL(G(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
G(x1) -> G(x1)
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
FwdInst


Dependency Pair:


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Forward Instantiation Transformation


Dependency Pair:

H(cons(X, Y)) -> H(g(cons(X, Y)))


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

H(cons(X, Y)) -> H(g(cons(X, Y)))
no new Dependency Pairs are created.
The transformation is resulting in no new DP problems.


Innermost Termination of R successfully shown.
Duration:
0:00 minutes