R
↳Dependency Pair Analysis
NATS -> ADX(zeros)
NATS -> ZEROS
ZEROS -> ZEROS
INCR(cons(X, Y)) -> INCR(Y)
ADX(cons(X, Y)) -> INCR(cons(X, adx(Y)))
ADX(cons(X, Y)) -> ADX(Y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Remaining
→DP Problem 3
↳Remaining
INCR(cons(X, Y)) -> INCR(Y)
nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y
innermost
one new Dependency Pair is created:
INCR(cons(X, Y)) -> INCR(Y)
INCR(cons(X, cons(X'', Y''))) -> INCR(cons(X'', Y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳Remaining
→DP Problem 3
↳Remaining
INCR(cons(X, cons(X'', Y''))) -> INCR(cons(X'', Y''))
nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y
innermost
one new Dependency Pair is created:
INCR(cons(X, cons(X'', Y''))) -> INCR(cons(X'', Y''))
INCR(cons(X, cons(X'''', cons(X''''', Y'''')))) -> INCR(cons(X'''', cons(X''''', Y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳Remaining
→DP Problem 3
↳Remaining
INCR(cons(X, cons(X'''', cons(X''''', Y'''')))) -> INCR(cons(X'''', cons(X''''', Y'''')))
nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y
innermost
INCR(cons(X, cons(X'''', cons(X''''', Y'''')))) -> INCR(cons(X'''', cons(X''''', Y'''')))
POL(cons(x1, x2)) = 1 + x2 POL(INCR(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Remaining
→DP Problem 3
↳Remaining
nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
ZEROS -> ZEROS
nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y
innermost
ADX(cons(X, Y)) -> ADX(Y)
nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
ZEROS -> ZEROS
nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y
innermost
ADX(cons(X, Y)) -> ADX(Y)
nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y
innermost