Term Rewriting System R:
[X, Y]
nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

NATS -> ADX(zeros)
NATS -> ZEROS
ZEROS -> ZEROS
INCR(cons(X, Y)) -> INCR(Y)
ADX(cons(X, Y)) -> INCR(cons(X, adx(Y)))
ADX(cons(X, Y)) -> ADX(Y)

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳Remaining`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

INCR(cons(X, Y)) -> INCR(Y)

Rules:

nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y

Strategy:

innermost

The following dependency pair can be strictly oriented:

INCR(cons(X, Y)) -> INCR(Y)

There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
INCR(x1) -> INCR(x1)
cons(x1, x2) -> cons(x1, x2)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 4`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Remaining`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

Rules:

nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

ZEROS -> ZEROS

Rules:

nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y

Strategy:

innermost

• Dependency Pair:

ADX(cons(X, Y)) -> ADX(Y)

Rules:

nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y

Strategy:

innermost

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

ZEROS -> ZEROS

Rules:

nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y

Strategy:

innermost

• Dependency Pair:

ADX(cons(X, Y)) -> ADX(Y)

Rules:

nats -> adx(zeros)
zeros -> cons(0, zeros)
incr(cons(X, Y)) -> cons(s(X), incr(Y))
adx(cons(X, Y)) -> incr(cons(X, adx(Y)))
hd(cons(X, Y)) -> X
tl(cons(X, Y)) -> Y

Strategy:

innermost

Innermost Termination of R could not be shown.
Duration:
0:00 minutes