R
↳Dependency Pair Analysis
FROM(X) -> FROM(s(X))
2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, Z)
2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, Z)
PI(X) -> 2NDSPOS(X, from(0))
PI(X) -> FROM(0)
PLUS(s(X), Y) -> PLUS(X, Y)
TIMES(s(X), Y) -> PLUS(Y, times(X, Y))
TIMES(s(X), Y) -> TIMES(X, Y)
SQUARE(X) -> TIMES(X, X)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
→DP Problem 2
↳Remaining
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
FROM(X) -> FROM(s(X))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
one new Dependency Pair is created:
FROM(X) -> FROM(s(X))
FROM(s(X'')) -> FROM(s(s(X'')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 5
↳Instantiation Transformation
→DP Problem 2
↳Remaining
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
FROM(s(X'')) -> FROM(s(s(X'')))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
one new Dependency Pair is created:
FROM(s(X'')) -> FROM(s(s(X'')))
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 5
↳Inst
...
→DP Problem 6
↳Instantiation Transformation
→DP Problem 2
↳Remaining
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
one new Dependency Pair is created:
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 5
↳Inst
...
→DP Problem 7
↳Instantiation Transformation
→DP Problem 2
↳Remaining
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
one new Dependency Pair is created:
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 5
↳Inst
...
→DP Problem 8
↳Instantiation Transformation
→DP Problem 2
↳Remaining
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
one new Dependency Pair is created:
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, Z)
2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, Z)
2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
PLUS(s(X), Y) -> PLUS(X, Y)
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
TIMES(s(X), Y) -> TIMES(X, Y)
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, Z)
2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, Z)
2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
PLUS(s(X), Y) -> PLUS(X, Y)
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
TIMES(s(X), Y) -> TIMES(X, Y)
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, Z)
2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, Z)
2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
PLUS(s(X), Y) -> PLUS(X, Y)
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
TIMES(s(X), Y) -> TIMES(X, Y)
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, Z)
2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, Z)
2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z))
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
PLUS(s(X), Y) -> PLUS(X, Y)
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost
TIMES(s(X), Y) -> TIMES(X, Y)
from(X) -> cons(X, from(s(X)))
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
innermost