R
↳Dependency Pair Analysis
FILTER(cons(X, Y), 0, M) -> FILTER(Y, M, M)
FILTER(cons(X, Y), s(N), M) -> FILTER(Y, N, M)
SIEVE(cons(0, Y)) -> SIEVE(Y)
SIEVE(cons(s(N), Y)) -> SIEVE(filter(Y, N, N))
SIEVE(cons(s(N), Y)) -> FILTER(Y, N, N)
NATS(N) -> NATS(s(N))
ZPRIMES -> SIEVE(nats(s(s(0))))
ZPRIMES -> NATS(s(s(0)))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
FILTER(cons(X, Y), s(N), M) -> FILTER(Y, N, M)
FILTER(cons(X, Y), 0, M) -> FILTER(Y, M, M)
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
two new Dependency Pairs are created:
FILTER(cons(X, Y), 0, M) -> FILTER(Y, M, M)
FILTER(cons(X, cons(X'', Y'')), 0, 0) -> FILTER(cons(X'', Y''), 0, 0)
FILTER(cons(X, cons(X'', Y'')), 0, s(N'')) -> FILTER(cons(X'', Y''), s(N''), s(N''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
FILTER(cons(X, cons(X'', Y'')), 0, 0) -> FILTER(cons(X'', Y''), 0, 0)
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
one new Dependency Pair is created:
FILTER(cons(X, cons(X'', Y'')), 0, 0) -> FILTER(cons(X'', Y''), 0, 0)
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), 0, 0) -> FILTER(cons(X'''', cons(X''''', Y'''')), 0, 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 5
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), 0, 0) -> FILTER(cons(X'''', cons(X''''', Y'''')), 0, 0)
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), 0, 0) -> FILTER(cons(X'''', cons(X''''', Y'''')), 0, 0)
POL(FILTER(x1, x2, x3)) = 1 + x1 POL(0) = 0 POL(cons(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
→DP Problem 5
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
FILTER(cons(X, cons(X'', Y'')), 0, s(N'')) -> FILTER(cons(X'', Y''), s(N''), s(N''))
FILTER(cons(X, Y), s(N), M) -> FILTER(Y, N, M)
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
two new Dependency Pairs are created:
FILTER(cons(X, Y), s(N), M) -> FILTER(Y, N, M)
FILTER(cons(X, cons(X'', Y'')), s(s(N'')), M'') -> FILTER(cons(X'', Y''), s(N''), M'')
FILTER(cons(X, cons(X'', cons(X'''', Y''''))), s(0), s(N'''')) -> FILTER(cons(X'', cons(X'''', Y'''')), 0, s(N''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
FILTER(cons(X, cons(X'', cons(X'''', Y''''))), s(0), s(N'''')) -> FILTER(cons(X'', cons(X'''', Y'''')), 0, s(N''''))
FILTER(cons(X, cons(X'', Y'')), s(s(N'')), M'') -> FILTER(cons(X'', Y''), s(N''), M'')
FILTER(cons(X, cons(X'', Y'')), 0, s(N'')) -> FILTER(cons(X'', Y''), s(N''), s(N''))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
two new Dependency Pairs are created:
FILTER(cons(X, cons(X'', Y'')), 0, s(N'')) -> FILTER(cons(X'', Y''), s(N''), s(N''))
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), 0, s(s(N''''))) -> FILTER(cons(X'''', cons(X''''', Y'''')), s(s(N'''')), s(s(N'''')))
FILTER(cons(X, cons(X'''', cons(X'''0, cons(X'''''', Y'''''')))), 0, s(0)) -> FILTER(cons(X'''', cons(X'''0, cons(X'''''', Y''''''))), s(0), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
FILTER(cons(X, cons(X'''', cons(X'''0, cons(X'''''', Y'''''')))), 0, s(0)) -> FILTER(cons(X'''', cons(X'''0, cons(X'''''', Y''''''))), s(0), s(0))
FILTER(cons(X, cons(X'', Y'')), s(s(N'')), M'') -> FILTER(cons(X'', Y''), s(N''), M'')
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), 0, s(s(N''''))) -> FILTER(cons(X'''', cons(X''''', Y'''')), s(s(N'''')), s(s(N'''')))
FILTER(cons(X, cons(X'', cons(X'''', Y''''))), s(0), s(N'''')) -> FILTER(cons(X'', cons(X'''', Y'''')), 0, s(N''''))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
two new Dependency Pairs are created:
FILTER(cons(X, cons(X'', Y'')), s(s(N'')), M'') -> FILTER(cons(X'', Y''), s(N''), M'')
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), s(s(s(N''''))), M'''') -> FILTER(cons(X'''', cons(X''''', Y'''')), s(s(N'''')), M'''')
FILTER(cons(X, cons(X'''', cons(X'''0, cons(X'''''', Y'''''')))), s(s(0)), s(N'''''')) -> FILTER(cons(X'''', cons(X'''0, cons(X'''''', Y''''''))), s(0), s(N''''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
FILTER(cons(X, cons(X'''', cons(X'''0, cons(X'''''', Y'''''')))), s(s(0)), s(N'''''')) -> FILTER(cons(X'''', cons(X'''0, cons(X'''''', Y''''''))), s(0), s(N''''''))
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), s(s(s(N''''))), M'''') -> FILTER(cons(X'''', cons(X''''', Y'''')), s(s(N'''')), M'''')
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), 0, s(s(N''''))) -> FILTER(cons(X'''', cons(X''''', Y'''')), s(s(N'''')), s(s(N'''')))
FILTER(cons(X, cons(X'', cons(X'''', Y''''))), s(0), s(N'''')) -> FILTER(cons(X'', cons(X'''', Y'''')), 0, s(N''''))
FILTER(cons(X, cons(X'''', cons(X'''0, cons(X'''''', Y'''''')))), 0, s(0)) -> FILTER(cons(X'''', cons(X'''0, cons(X'''''', Y''''''))), s(0), s(0))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
two new Dependency Pairs are created:
FILTER(cons(X, cons(X'', cons(X'''', Y''''))), s(0), s(N'''')) -> FILTER(cons(X'', cons(X'''', Y'''')), 0, s(N''''))
FILTER(cons(X, cons(X''', cons(X''''', cons(X'''''''', Y'''''')))), s(0), s(s(N''''''))) -> FILTER(cons(X''', cons(X''''', cons(X'''''''', Y''''''))), 0, s(s(N'''''')))
FILTER(cons(X, cons(X''', cons(X'''''', cons(X'''0'', cons(X'''''''', Y''''''''))))), s(0), s(0)) -> FILTER(cons(X''', cons(X'''''', cons(X'''0'', cons(X'''''''', Y'''''''')))), 0, s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 10
↳Polynomial Ordering
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
FILTER(cons(X, cons(X'''', cons(X'''0, cons(X'''''', Y'''''')))), 0, s(0)) -> FILTER(cons(X'''', cons(X'''0, cons(X'''''', Y''''''))), s(0), s(0))
FILTER(cons(X, cons(X''', cons(X'''''', cons(X'''0'', cons(X'''''''', Y''''''''))))), s(0), s(0)) -> FILTER(cons(X''', cons(X'''''', cons(X'''0'', cons(X'''''''', Y'''''''')))), 0, s(0))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
FILTER(cons(X, cons(X'''', cons(X'''0, cons(X'''''', Y'''''')))), 0, s(0)) -> FILTER(cons(X'''', cons(X'''0, cons(X'''''', Y''''''))), s(0), s(0))
FILTER(cons(X, cons(X''', cons(X'''''', cons(X'''0'', cons(X'''''''', Y''''''''))))), s(0), s(0)) -> FILTER(cons(X''', cons(X'''''', cons(X'''0'', cons(X'''''''', Y'''''''')))), 0, s(0))
POL(FILTER(x1, x2, x3)) = 1 + x1 + x3 POL(0) = 0 POL(cons(x1, x2)) = 1 + x2 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 11
↳Polynomial Ordering
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), s(s(s(N''''))), M'''') -> FILTER(cons(X'''', cons(X''''', Y'''')), s(s(N'''')), M'''')
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), 0, s(s(N''''))) -> FILTER(cons(X'''', cons(X''''', Y'''')), s(s(N'''')), s(s(N'''')))
FILTER(cons(X, cons(X''', cons(X''''', cons(X'''''''', Y'''''')))), s(0), s(s(N''''''))) -> FILTER(cons(X''', cons(X''''', cons(X'''''''', Y''''''))), 0, s(s(N'''''')))
FILTER(cons(X, cons(X'''', cons(X'''0, cons(X'''''', Y'''''')))), s(s(0)), s(N'''''')) -> FILTER(cons(X'''', cons(X'''0, cons(X'''''', Y''''''))), s(0), s(N''''''))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), s(s(s(N''''))), M'''') -> FILTER(cons(X'''', cons(X''''', Y'''')), s(s(N'''')), M'''')
FILTER(cons(X, cons(X'''', cons(X''''', Y''''))), 0, s(s(N''''))) -> FILTER(cons(X'''', cons(X''''', Y'''')), s(s(N'''')), s(s(N'''')))
FILTER(cons(X, cons(X''', cons(X''''', cons(X'''''''', Y'''''')))), s(0), s(s(N''''''))) -> FILTER(cons(X''', cons(X''''', cons(X'''''''', Y''''''))), 0, s(s(N'''''')))
FILTER(cons(X, cons(X'''', cons(X'''0, cons(X'''''', Y'''''')))), s(s(0)), s(N'''''')) -> FILTER(cons(X'''', cons(X'''0, cons(X'''''', Y''''''))), s(0), s(N''''''))
POL(FILTER(x1, x2, x3)) = 1 + x1 POL(0) = 0 POL(cons(x1, x2)) = 1 + x2 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Instantiation Transformation
→DP Problem 3
↳Remaining
NATS(N) -> NATS(s(N))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
one new Dependency Pair is created:
NATS(N) -> NATS(s(N))
NATS(s(N'')) -> NATS(s(s(N'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 15
↳Instantiation Transformation
→DP Problem 3
↳Remaining
NATS(s(N'')) -> NATS(s(s(N'')))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
one new Dependency Pair is created:
NATS(s(N'')) -> NATS(s(s(N'')))
NATS(s(s(N''''))) -> NATS(s(s(s(N''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 15
↳Inst
...
→DP Problem 16
↳Instantiation Transformation
→DP Problem 3
↳Remaining
NATS(s(s(N''''))) -> NATS(s(s(s(N''''))))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
one new Dependency Pair is created:
NATS(s(s(N''''))) -> NATS(s(s(s(N''''))))
NATS(s(s(s(N'''''')))) -> NATS(s(s(s(s(N'''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 15
↳Inst
...
→DP Problem 17
↳Instantiation Transformation
→DP Problem 3
↳Remaining
NATS(s(s(s(N'''''')))) -> NATS(s(s(s(s(N'''''')))))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
one new Dependency Pair is created:
NATS(s(s(s(N'''''')))) -> NATS(s(s(s(s(N'''''')))))
NATS(s(s(s(s(N''''''''))))) -> NATS(s(s(s(s(s(N''''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 15
↳Inst
...
→DP Problem 18
↳Instantiation Transformation
→DP Problem 3
↳Remaining
NATS(s(s(s(s(N''''''''))))) -> NATS(s(s(s(s(s(N''''''''))))))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
one new Dependency Pair is created:
NATS(s(s(s(s(N''''''''))))) -> NATS(s(s(s(s(s(N''''''''))))))
NATS(s(s(s(s(s(N'''''''''')))))) -> NATS(s(s(s(s(s(s(N'''''''''')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining Obligation(s)
NATS(s(s(s(s(s(N'''''''''')))))) -> NATS(s(s(s(s(s(s(N'''''''''')))))))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
SIEVE(cons(s(N), Y)) -> SIEVE(filter(Y, N, N))
SIEVE(cons(0, Y)) -> SIEVE(Y)
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining Obligation(s)
NATS(s(s(s(s(s(N'''''''''')))))) -> NATS(s(s(s(s(s(s(N'''''''''')))))))
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost
SIEVE(cons(s(N), Y)) -> SIEVE(filter(Y, N, N))
SIEVE(cons(0, Y)) -> SIEVE(Y)
filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M))
sieve(cons(0, Y)) -> cons(0, sieve(Y))
sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N)))
nats(N) -> cons(N, nats(s(N)))
zprimes -> sieve(nats(s(s(0))))
innermost