R
↳Dependency Pair Analysis
F(X) -> F(g(X))
F(X) -> G(X)
G(s(X)) -> G(X)
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
G(s(X)) -> G(X)
f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
G(s(X)) -> G(X)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 5
↳Size-Change Principle
→DP Problem 3
↳UsableRules
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
none
innermost
|
|
trivial
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
F(X) -> F(g(X))
f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 6
↳Non Termination
F(X) -> F(g(X))
g(s(X)) -> s(s(g(X)))
g(0) -> s(0)
innermost
F(X) -> F(g(X))
g(s(X)) -> s(s(g(X)))
g(0) -> s(0)