R
↳Dependency Pair Analysis
F(X) -> F(g(X))
F(X) -> G(X)
G(s(X)) -> G(X)
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳Remaining
G(s(X)) -> G(X)
f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
G(s(X)) -> G(X)
POL(G(x1)) = x1 POL(s(x1)) = 1 + x1
G(x1) -> G(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳Remaining
f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳Remaining
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
POL(SEL(x1, x2)) = x1 + x2 POL(cons(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Remaining
f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Remaining Obligation(s)
F(X) -> F(g(X))
f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost