R
↳Dependency Pair Analysis
FROM(X) -> FROM(s(X))
AFTER(s(N), cons(X, XS)) -> AFTER(N, XS)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
→DP Problem 2
↳Remaining
FROM(X) -> FROM(s(X))
from(X) -> cons(X, from(s(X)))
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, XS)
innermost
one new Dependency Pair is created:
FROM(X) -> FROM(s(X))
FROM(s(X'')) -> FROM(s(s(X'')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳Instantiation Transformation
→DP Problem 2
↳Remaining
FROM(s(X'')) -> FROM(s(s(X'')))
from(X) -> cons(X, from(s(X)))
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, XS)
innermost
one new Dependency Pair is created:
FROM(s(X'')) -> FROM(s(s(X'')))
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳Inst
...
→DP Problem 4
↳Instantiation Transformation
→DP Problem 2
↳Remaining
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
from(X) -> cons(X, from(s(X)))
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, XS)
innermost
one new Dependency Pair is created:
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳Inst
...
→DP Problem 5
↳Instantiation Transformation
→DP Problem 2
↳Remaining
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
from(X) -> cons(X, from(s(X)))
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, XS)
innermost
one new Dependency Pair is created:
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳Inst
...
→DP Problem 6
↳Instantiation Transformation
→DP Problem 2
↳Remaining
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
from(X) -> cons(X, from(s(X)))
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, XS)
innermost
one new Dependency Pair is created:
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
from(X) -> cons(X, from(s(X)))
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, XS)
innermost
AFTER(s(N), cons(X, XS)) -> AFTER(N, XS)
from(X) -> cons(X, from(s(X)))
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, XS)
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
from(X) -> cons(X, from(s(X)))
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, XS)
innermost
AFTER(s(N), cons(X, XS)) -> AFTER(N, XS)
from(X) -> cons(X, from(s(X)))
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, XS)
innermost