R
↳Dependency Pair Analysis
FROM(X) -> FROM(s(X))
SEL(s(N), cons(X, XS)) -> SEL(N, XS)
MINUS(s(X), s(Y)) -> MINUS(X, Y)
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MINUS(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> QUOT(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ZWQUOT(XS, YS)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
→DP Problem 2
↳Remaining
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
FROM(X) -> FROM(s(X))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
one new Dependency Pair is created:
FROM(X) -> FROM(s(X))
FROM(s(X'')) -> FROM(s(s(X'')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
FROM(s(X'')) -> FROM(s(s(X'')))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
SEL(s(N), cons(X, XS)) -> SEL(N, XS)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
MINUS(s(X), s(Y)) -> MINUS(X, Y)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ZWQUOT(XS, YS)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
FROM(s(X'')) -> FROM(s(s(X'')))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
SEL(s(N), cons(X, XS)) -> SEL(N, XS)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
MINUS(s(X), s(Y)) -> MINUS(X, Y)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ZWQUOT(XS, YS)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
FROM(s(X'')) -> FROM(s(s(X'')))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
SEL(s(N), cons(X, XS)) -> SEL(N, XS)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
MINUS(s(X), s(Y)) -> MINUS(X, Y)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ZWQUOT(XS, YS)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
FROM(s(X'')) -> FROM(s(s(X'')))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
SEL(s(N), cons(X, XS)) -> SEL(N, XS)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
MINUS(s(X), s(Y)) -> MINUS(X, Y)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ZWQUOT(XS, YS)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
FROM(s(X'')) -> FROM(s(s(X'')))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
SEL(s(N), cons(X, XS)) -> SEL(N, XS)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
MINUS(s(X), s(Y)) -> MINUS(X, Y)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ZWQUOT(XS, YS)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, XS)
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS))
innermost