Term Rewriting System R:
[Y, X]
minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

MINUS(s(X), s(Y)) -> MINUS(X, Y)
GEQ(s(X), s(Y)) -> GEQ(X, Y)
DIV(s(X), s(Y)) -> IF(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
DIV(s(X), s(Y)) -> GEQ(X, Y)
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
DIV(s(X), s(Y)) -> MINUS(X, Y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:

MINUS(s(X), s(Y)) -> MINUS(X, Y)


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




The following dependency pair can be strictly oriented:

MINUS(s(X), s(Y)) -> MINUS(X, Y)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS


Dependency Pair:

GEQ(s(X), s(Y)) -> GEQ(X, Y)


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




The following dependency pair can be strictly oriented:

GEQ(s(X), s(Y)) -> GEQ(X, Y)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
GEQ(x1, x2) -> GEQ(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
AFS


Dependency Pair:


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering


Dependency Pair:

DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




The following dependency pair can be strictly oriented:

DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))


The following usable rules for innermost w.r.t. to the AFS can be oriented:

minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)


Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
DIV(x1, x2) -> DIV(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> x1


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 6
Dependency Graph


Dependency Pair:


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes