Term Rewriting System R:
[Y, X]
minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

MINUS(s(X), s(Y)) -> MINUS(X, Y)
GEQ(s(X), s(Y)) -> GEQ(X, Y)
DIV(s(X), s(Y)) -> IF(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
DIV(s(X), s(Y)) -> GEQ(X, Y)
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
DIV(s(X), s(Y)) -> MINUS(X, Y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(X), s(Y)) -> MINUS(X, Y)


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(X), s(Y)) -> MINUS(X, Y)
one new Dependency Pair is created:

MINUS(s(s(X'')), s(s(Y''))) -> MINUS(s(X''), s(Y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(X'')), s(s(Y''))) -> MINUS(s(X''), s(Y''))


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(X'')), s(s(Y''))) -> MINUS(s(X''), s(Y''))
one new Dependency Pair is created:

MINUS(s(s(s(X''''))), s(s(s(Y'''')))) -> MINUS(s(s(X'''')), s(s(Y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(s(X''''))), s(s(s(Y'''')))) -> MINUS(s(s(X'''')), s(s(Y'''')))


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




The following dependency pair can be strictly oriented:

MINUS(s(s(s(X''''))), s(s(s(Y'''')))) -> MINUS(s(s(X'''')), s(s(Y'''')))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar


Dependency Pair:


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pair:

GEQ(s(X), s(Y)) -> GEQ(X, Y)


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

GEQ(s(X), s(Y)) -> GEQ(X, Y)
one new Dependency Pair is created:

GEQ(s(s(X'')), s(s(Y''))) -> GEQ(s(X''), s(Y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pair:

GEQ(s(s(X'')), s(s(Y''))) -> GEQ(s(X''), s(Y''))


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

GEQ(s(s(X'')), s(s(Y''))) -> GEQ(s(X''), s(Y''))
one new Dependency Pair is created:

GEQ(s(s(s(X''''))), s(s(s(Y'''')))) -> GEQ(s(s(X'''')), s(s(Y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
FwdInst
             ...
               →DP Problem 8
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pair:

GEQ(s(s(s(X''''))), s(s(s(Y'''')))) -> GEQ(s(s(X'''')), s(s(Y'''')))


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




The following dependency pair can be strictly oriented:

GEQ(s(s(s(X''''))), s(s(s(Y'''')))) -> GEQ(s(s(X'''')), s(s(Y'''')))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
GEQ(x1, x2) -> GEQ(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 7
FwdInst
             ...
               →DP Problem 9
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Narrowing Transformation


Dependency Pair:

DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
two new Dependency Pairs are created:

DIV(s(0), s(Y'')) -> DIV(0, s(Y''))
DIV(s(s(X'')), s(s(Y''))) -> DIV(minus(X'', Y''), s(s(Y'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Narrowing Transformation


Dependency Pair:

DIV(s(s(X'')), s(s(Y''))) -> DIV(minus(X'', Y''), s(s(Y'')))


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

DIV(s(s(X'')), s(s(Y''))) -> DIV(minus(X'', Y''), s(s(Y'')))
two new Dependency Pairs are created:

DIV(s(s(0)), s(s(Y'''))) -> DIV(0, s(s(Y''')))
DIV(s(s(s(X'))), s(s(s(Y')))) -> DIV(minus(X', Y'), s(s(s(Y'))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Nar
           →DP Problem 10
Nar
             ...
               →DP Problem 11
Forward Instantiation Transformation


Dependency Pair:

DIV(s(s(s(X'))), s(s(s(Y')))) -> DIV(minus(X', Y'), s(s(s(Y'))))


Rules:


minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

DIV(s(s(s(X'))), s(s(s(Y')))) -> DIV(minus(X', Y'), s(s(s(Y'))))
no new Dependency Pairs are created.
The transformation is resulting in no new DP problems.


Innermost Termination of R successfully shown.
Duration:
0:00 minutes