R
↳Dependency Pair Analysis
FROM(X) -> FROM(s(X))
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
→DP Problem 2
↳Remaining
FROM(X) -> FROM(s(X))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
one new Dependency Pair is created:
FROM(X) -> FROM(s(X))
FROM(s(X'')) -> FROM(s(s(X'')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
FROM(s(X'')) -> FROM(s(s(X'')))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
FROM(s(X'')) -> FROM(s(s(X'')))
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
from(X) -> cons(X, from(s(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost