R
↳Dependency Pair Analysis
FROM(X) -> FROM(s(X))
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
FROM(X) -> FROM(s(X))
from(X) -> cons(X, from(s(X)))
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
from(X) -> cons(X, from(s(X)))
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
from(X) -> cons(X, from(s(X)))
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
FROM(X) -> FROM(s(X))
from(X) -> cons(X, from(s(X)))
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
from(X) -> cons(X, from(s(X)))
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
from(X) -> cons(X, from(s(X)))
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
FROM(X) -> FROM(s(X))
from(X) -> cons(X, from(s(X)))
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
from(X) -> cons(X, from(s(X)))
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
from(X) -> cons(X, from(s(X)))
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
innermost