R
↳Dependency Pair Analysis
LEQ(s(X), s(Y)) -> LEQ(X, Y)
DIFF(X, Y) -> IF(leq(X, Y), 0, s(diff(p(X), Y)))
DIFF(X, Y) -> LEQ(X, Y)
DIFF(X, Y) -> DIFF(p(X), Y)
DIFF(X, Y) -> P(X)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
LEQ(s(X), s(Y)) -> LEQ(X, Y)
p(0) -> 0
p(s(X)) -> X
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> X
if(false, X, Y) -> Y
diff(X, Y) -> if(leq(X, Y), 0, s(diff(p(X), Y)))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 3
↳Size-Change Principle
→DP Problem 2
↳UsableRules
LEQ(s(X), s(Y)) -> LEQ(X, Y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
DIFF(X, Y) -> DIFF(p(X), Y)
p(0) -> 0
p(s(X)) -> X
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> X
if(false, X, Y) -> Y
diff(X, Y) -> if(leq(X, Y), 0, s(diff(p(X), Y)))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳Modular Removal of Rules
DIFF(X, Y) -> DIFF(p(X), Y)
p(s(X)) -> X
p(0) -> 0
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
p(s(X)) -> X
p(0) -> 0
POL(DIFF(x1, x2)) = x1 + x2 POL(0) = 0 POL(s(x1)) = x1 POL(p(x1)) = x1
p(s(X)) -> X
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳MRR
...
→DP Problem 5
↳Non Termination
DIFF(X, Y) -> DIFF(p(X), Y)
p(0) -> 0
innermost
DIFF(X, Y) -> DIFF(p(X), Y)
p(0) -> 0