R
↳Dependency Pair Analysis
EQ(s(X), s(Y)) -> EQ(X, Y)
INF(X) -> INF(s(X))
TAKE(s(X), cons(Y, L)) -> TAKE(X, L)
LENGTH(cons(X, L)) -> LENGTH(L)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
EQ(s(X), s(Y)) -> EQ(X, Y)
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
one new Dependency Pair is created:
EQ(s(X), s(Y)) -> EQ(X, Y)
EQ(s(s(X'')), s(s(Y''))) -> EQ(s(X''), s(Y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
EQ(s(s(X'')), s(s(Y''))) -> EQ(s(X''), s(Y''))
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
one new Dependency Pair is created:
EQ(s(s(X'')), s(s(Y''))) -> EQ(s(X''), s(Y''))
EQ(s(s(s(X''''))), s(s(s(Y'''')))) -> EQ(s(s(X'''')), s(s(Y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
EQ(s(s(s(X''''))), s(s(s(Y'''')))) -> EQ(s(s(X'''')), s(s(Y'''')))
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
EQ(s(s(s(X''''))), s(s(s(Y'''')))) -> EQ(s(s(X'''')), s(s(Y'''')))
EQ(x1, x2) -> EQ(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Instantiation Transformation
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
INF(X) -> INF(s(X))
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
one new Dependency Pair is created:
INF(X) -> INF(s(X))
INF(s(X'')) -> INF(s(s(X'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 8
↳Instantiation Transformation
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
INF(s(X'')) -> INF(s(s(X'')))
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
one new Dependency Pair is created:
INF(s(X'')) -> INF(s(s(X'')))
INF(s(s(X''''))) -> INF(s(s(s(X''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 8
↳Inst
...
→DP Problem 9
↳Instantiation Transformation
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
INF(s(s(X''''))) -> INF(s(s(s(X''''))))
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
one new Dependency Pair is created:
INF(s(s(X''''))) -> INF(s(s(s(X''''))))
INF(s(s(s(X'''''')))) -> INF(s(s(s(s(X'''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 8
↳Inst
...
→DP Problem 10
↳Instantiation Transformation
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
INF(s(s(s(X'''''')))) -> INF(s(s(s(s(X'''''')))))
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
one new Dependency Pair is created:
INF(s(s(s(X'''''')))) -> INF(s(s(s(s(X'''''')))))
INF(s(s(s(s(X''''''''))))) -> INF(s(s(s(s(s(X''''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 8
↳Inst
...
→DP Problem 11
↳Instantiation Transformation
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
INF(s(s(s(s(X''''''''))))) -> INF(s(s(s(s(s(X''''''''))))))
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
one new Dependency Pair is created:
INF(s(s(s(s(X''''''''))))) -> INF(s(s(s(s(s(X''''''''))))))
INF(s(s(s(s(s(X'''''''''')))))) -> INF(s(s(s(s(s(s(X'''''''''')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
INF(s(s(s(s(s(X'''''''''')))))) -> INF(s(s(s(s(s(s(X'''''''''')))))))
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
TAKE(s(X), cons(Y, L)) -> TAKE(X, L)
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
LENGTH(cons(X, L)) -> LENGTH(L)
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
INF(s(s(s(s(s(X'''''''''')))))) -> INF(s(s(s(s(s(s(X'''''''''')))))))
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
TAKE(s(X), cons(Y, L)) -> TAKE(X, L)
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
LENGTH(cons(X, L)) -> LENGTH(L)
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
INF(s(s(s(s(s(X'''''''''')))))) -> INF(s(s(s(s(s(s(X'''''''''')))))))
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
TAKE(s(X), cons(Y, L)) -> TAKE(X, L)
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost
LENGTH(cons(X, L)) -> LENGTH(L)
eq(0, 0) -> true
eq(s(X), s(Y)) -> eq(X, Y)
eq(X, Y) -> false
inf(X) -> cons(X, inf(s(X)))
take(0, X) -> nil
take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
length(nil) -> 0
length(cons(X, L)) -> s(length(L))
innermost