Term Rewriting System R:
[X, Y, Z]
2nd(cons(X, cons(Y, Z))) -> Y
from(X) -> cons(X, from(s(X)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FROM(X) -> FROM(s(X))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Instantiation Transformation


Dependency Pair:

FROM(X) -> FROM(s(X))


Rules:


2nd(cons(X, cons(Y, Z))) -> Y
from(X) -> cons(X, from(s(X)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

FROM(X) -> FROM(s(X))
one new Dependency Pair is created:

FROM(s(X'')) -> FROM(s(s(X'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Instantiation Transformation


Dependency Pair:

FROM(s(X'')) -> FROM(s(s(X'')))


Rules:


2nd(cons(X, cons(Y, Z))) -> Y
from(X) -> cons(X, from(s(X)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

FROM(s(X'')) -> FROM(s(s(X'')))
one new Dependency Pair is created:

FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 3
Instantiation Transformation


Dependency Pair:

FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))


Rules:


2nd(cons(X, cons(Y, Z))) -> Y
from(X) -> cons(X, from(s(X)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
one new Dependency Pair is created:

FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 4
Instantiation Transformation


Dependency Pair:

FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))


Rules:


2nd(cons(X, cons(Y, Z))) -> Y
from(X) -> cons(X, from(s(X)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
one new Dependency Pair is created:

FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 5
Instantiation Transformation


Dependency Pair:

FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))


Rules:


2nd(cons(X, cons(Y, Z))) -> Y
from(X) -> cons(X, from(s(X)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
one new Dependency Pair is created:

FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 6
Remaining Obligation(s)




The following remains to be proven:
Dependency Pair:

FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))


Rules:


2nd(cons(X, cons(Y, Z))) -> Y
from(X) -> cons(X, from(s(X)))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:00 minutes