R
↳Dependency Pair Analysis
ADD(s(X), Y) -> ADD(X, Y)
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
FROM(X) -> FROM(s(X))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳Inst
ADD(s(X), Y) -> ADD(X, Y)
and(true, X) -> X
and(false, Y) -> false
if(true, X, Y) -> X
if(false, X, Y) -> Y
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
innermost
ADD(s(X), Y) -> ADD(X, Y)
POL(s(x1)) = 1 + x1 POL(ADD(x1, x2)) = x1 + x2
ADD(x1, x2) -> ADD(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳Inst
and(true, X) -> X
and(false, Y) -> false
if(true, X, Y) -> X
if(false, X, Y) -> Y
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳Inst
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
and(true, X) -> X
and(false, Y) -> false
if(true, X, Y) -> X
if(false, X, Y) -> Y
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
innermost
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
POL(cons(x1, x2)) = x1 + x2 POL(FIRST(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
FIRST(x1, x2) -> FIRST(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Inst
and(true, X) -> X
and(false, Y) -> false
if(true, X, Y) -> X
if(false, X, Y) -> Y
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Instantiation Transformation
FROM(X) -> FROM(s(X))
and(true, X) -> X
and(false, Y) -> false
if(true, X, Y) -> X
if(false, X, Y) -> Y
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
innermost
one new Dependency Pair is created:
FROM(X) -> FROM(s(X))
FROM(s(X'')) -> FROM(s(s(X'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Inst
→DP Problem 6
↳Remaining Obligation(s)
FROM(s(X'')) -> FROM(s(s(X'')))
and(true, X) -> X
and(false, Y) -> false
if(true, X, Y) -> X
if(false, X, Y) -> Y
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
innermost