Term Rewriting System R:
[X, Y]
from(X) -> cons(X, from(s(X)))
length(nil) -> 0
length(cons(X, Y)) -> s(length1(Y))
length1(X) -> length(X)

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

FROM(X) -> FROM(s(X))
LENGTH(cons(X, Y)) -> LENGTH1(Y)
LENGTH1(X) -> LENGTH(X)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

FROM(X) -> FROM(s(X))

Rules:

from(X) -> cons(X, from(s(X)))
length(nil) -> 0
length(cons(X, Y)) -> s(length1(Y))
length1(X) -> length(X)

Strategy:

innermost

• Dependency Pairs:

LENGTH1(X) -> LENGTH(X)
LENGTH(cons(X, Y)) -> LENGTH1(Y)

Rules:

from(X) -> cons(X, from(s(X)))
length(nil) -> 0
length(cons(X, Y)) -> s(length1(Y))
length1(X) -> length(X)

Strategy:

innermost

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

FROM(X) -> FROM(s(X))

Rules:

from(X) -> cons(X, from(s(X)))
length(nil) -> 0
length(cons(X, Y)) -> s(length1(Y))
length1(X) -> length(X)

Strategy:

innermost

• Dependency Pairs:

LENGTH1(X) -> LENGTH(X)
LENGTH(cons(X, Y)) -> LENGTH1(Y)

Rules:

from(X) -> cons(X, from(s(X)))
length(nil) -> 0
length(cons(X, Y)) -> s(length1(Y))
length1(X) -> length(X)

Strategy:

innermost

Innermost Termination of R could not be shown.
Duration:
0:00 minutes