Term Rewriting System R:
[x]
f(s(x)) -> f(g(x, x))
g(0, 1) -> s(0)
0 -> 1

Innermost Termination of R to be shown.



   R
Removing Redundant Rules for Innermost Termination



Removing the following rules from R which left hand sides contain non normal subterms

g(0, 1) -> s(0)


   R
RRRI
       →TRS2
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

f(s(x)) -> f(g(x, x))

where the Polynomial interpretation:
  POL(0)=  0  
  POL(g(x1, x2))=  x1 + x2  
  POL(1)=  0  
  POL(s(x1))=  1 + 2·x1  
  POL(f(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

0 -> 1

where the Polynomial interpretation:
  POL(0)=  1  
  POL(1)=  0  
was used.

All Rules of R can be deleted.


   R
RRRI
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS4
Dependency Pair Analysis



R contains no Dependency Pairs and therefore no SCCs.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes