Term Rewriting System R:
[x, y]
f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
F(c(s(x), y)) -> F(c(x, s(y)))
G(c(x, s(y))) -> G(c(s(x), y))
G(s(f(x))) -> G(f(x))
Furthermore, R contains two SCCs.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
Dependency Pair:
F(c(s(x), y)) -> F(c(x, s(y)))
Rules:
f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))
Strategy:
innermost
As we are in the innermost case, we can delete all 3 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 3
↳Size-Change Principle
→DP Problem 2
↳UsableRules
Dependency Pair:
F(c(s(x), y)) -> F(c(x, s(y)))
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- F(c(s(x), y)) -> F(c(x, s(y)))
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
c(x1, x2) -> c(x1)
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
Dependency Pair:
G(c(x, s(y))) -> G(c(s(x), y))
Rules:
f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))
Strategy:
innermost
As we are in the innermost case, we can delete all 3 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳Size-Change Principle
Dependency Pair:
G(c(x, s(y))) -> G(c(s(x), y))
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- G(c(x, s(y))) -> G(c(s(x), y))
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
c(x1, x2) -> c(x2)
s(x1) -> s(x1)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes