R
↳Dependency Pair Analysis
EQ(s(n), s(m)) -> EQ(n, m)
LE(s(n), s(m)) -> LE(n, m)
MIN(cons(n, cons(m, x))) -> IFMIN(le(n, m), cons(n, cons(m, x)))
MIN(cons(n, cons(m, x))) -> LE(n, m)
IFMIN(true, cons(n, cons(m, x))) -> MIN(cons(n, x))
IFMIN(false, cons(n, cons(m, x))) -> MIN(cons(m, x))
REPLACE(n, m, cons(k, x)) -> IFREPLACE(eq(n, k), n, m, cons(k, x))
REPLACE(n, m, cons(k, x)) -> EQ(n, k)
IFREPLACE(false, n, m, cons(k, x)) -> REPLACE(n, m, x)
SORT(cons(n, x)) -> MIN(cons(n, x))
SORT(cons(n, x)) -> SORT(replace(min(cons(n, x)), n, x))
SORT(cons(n, x)) -> REPLACE(min(cons(n, x)), n, x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
EQ(s(n), s(m)) -> EQ(n, m)
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
EQ(s(n), s(m)) -> EQ(n, m)
EQ(s(s(n'')), s(s(m''))) -> EQ(s(n''), s(m''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 6
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
EQ(s(s(n'')), s(s(m''))) -> EQ(s(n''), s(m''))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
EQ(s(s(n'')), s(s(m''))) -> EQ(s(n''), s(m''))
EQ(s(s(s(n''''))), s(s(s(m'''')))) -> EQ(s(s(n'''')), s(s(m'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 7
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
EQ(s(s(s(n''''))), s(s(s(m'''')))) -> EQ(s(s(n'''')), s(s(m'''')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
EQ(s(s(s(n''''))), s(s(s(m'''')))) -> EQ(s(s(n'''')), s(s(m'''')))
POL(EQ(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
LE(s(n), s(m)) -> LE(n, m)
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
LE(s(n), s(m)) -> LE(n, m)
LE(s(s(n'')), s(s(m''))) -> LE(s(n''), s(m''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
LE(s(s(n'')), s(s(m''))) -> LE(s(n''), s(m''))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
LE(s(s(n'')), s(s(m''))) -> LE(s(n''), s(m''))
LE(s(s(s(n''''))), s(s(s(m'''')))) -> LE(s(s(n'''')), s(s(m'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 9
↳FwdInst
...
→DP Problem 10
↳Polynomial Ordering
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
LE(s(s(s(n''''))), s(s(s(m'''')))) -> LE(s(s(n'''')), s(s(m'''')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
LE(s(s(s(n''''))), s(s(s(m'''')))) -> LE(s(s(n'''')), s(s(m'''')))
POL(LE(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 9
↳FwdInst
...
→DP Problem 11
↳Dependency Graph
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Narrowing Transformation
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
IFREPLACE(false, n, m, cons(k, x)) -> REPLACE(n, m, x)
REPLACE(n, m, cons(k, x)) -> IFREPLACE(eq(n, k), n, m, cons(k, x))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
four new Dependency Pairs are created:
REPLACE(n, m, cons(k, x)) -> IFREPLACE(eq(n, k), n, m, cons(k, x))
REPLACE(0, m, cons(0, x)) -> IFREPLACE(true, 0, m, cons(0, x))
REPLACE(0, m, cons(s(m''), x)) -> IFREPLACE(false, 0, m, cons(s(m''), x))
REPLACE(s(n''), m, cons(0, x)) -> IFREPLACE(false, s(n''), m, cons(0, x))
REPLACE(s(n''), m, cons(s(m''), x)) -> IFREPLACE(eq(n'', m''), s(n''), m, cons(s(m''), x))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Narrowing Transformation
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
REPLACE(s(n''), m, cons(s(m''), x)) -> IFREPLACE(eq(n'', m''), s(n''), m, cons(s(m''), x))
REPLACE(s(n''), m, cons(0, x)) -> IFREPLACE(false, s(n''), m, cons(0, x))
REPLACE(0, m, cons(s(m''), x)) -> IFREPLACE(false, 0, m, cons(s(m''), x))
IFREPLACE(false, n, m, cons(k, x)) -> REPLACE(n, m, x)
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
four new Dependency Pairs are created:
REPLACE(s(n''), m, cons(s(m''), x)) -> IFREPLACE(eq(n'', m''), s(n''), m, cons(s(m''), x))
REPLACE(s(0), m, cons(s(0), x)) -> IFREPLACE(true, s(0), m, cons(s(0), x))
REPLACE(s(0), m, cons(s(s(m''')), x)) -> IFREPLACE(false, s(0), m, cons(s(s(m''')), x))
REPLACE(s(s(n')), m, cons(s(0), x)) -> IFREPLACE(false, s(s(n')), m, cons(s(0), x))
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 13
↳Instantiation Transformation
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
REPLACE(s(s(n')), m, cons(s(0), x)) -> IFREPLACE(false, s(s(n')), m, cons(s(0), x))
REPLACE(s(0), m, cons(s(s(m''')), x)) -> IFREPLACE(false, s(0), m, cons(s(s(m''')), x))
REPLACE(0, m, cons(s(m''), x)) -> IFREPLACE(false, 0, m, cons(s(m''), x))
IFREPLACE(false, n, m, cons(k, x)) -> REPLACE(n, m, x)
REPLACE(s(n''), m, cons(0, x)) -> IFREPLACE(false, s(n''), m, cons(0, x))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
five new Dependency Pairs are created:
IFREPLACE(false, n, m, cons(k, x)) -> REPLACE(n, m, x)
IFREPLACE(false, 0, m'', cons(s(m''''), x'')) -> REPLACE(0, m'', x'')
IFREPLACE(false, s(n''''), m'', cons(0, x'')) -> REPLACE(s(n''''), m'', x'')
IFREPLACE(false, s(0), m'', cons(s(s(m''''')), x'')) -> REPLACE(s(0), m'', x'')
IFREPLACE(false, s(s(n''')), m'', cons(s(0), x'')) -> REPLACE(s(s(n''')), m'', x'')
IFREPLACE(false, s(s(n''')), m'', cons(s(s(m''''')), x')) -> REPLACE(s(s(n''')), m'', x')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 14
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
IFREPLACE(false, s(s(n''')), m'', cons(s(0), x'')) -> REPLACE(s(s(n''')), m'', x'')
REPLACE(s(s(n')), m, cons(s(0), x)) -> IFREPLACE(false, s(s(n')), m, cons(s(0), x))
IFREPLACE(false, s(0), m'', cons(s(s(m''''')), x'')) -> REPLACE(s(0), m'', x'')
REPLACE(s(0), m, cons(s(s(m''')), x)) -> IFREPLACE(false, s(0), m, cons(s(s(m''')), x))
IFREPLACE(false, s(n''''), m'', cons(0, x'')) -> REPLACE(s(n''''), m'', x'')
REPLACE(s(n''), m, cons(0, x)) -> IFREPLACE(false, s(n''), m, cons(0, x))
IFREPLACE(false, s(s(n''')), m'', cons(s(s(m''''')), x')) -> REPLACE(s(s(n''')), m'', x')
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
four new Dependency Pairs are created:
IFREPLACE(false, s(n''''), m'', cons(0, x'')) -> REPLACE(s(n''''), m'', x'')
IFREPLACE(false, s(n'''''), m''', cons(0, cons(0, x'''))) -> REPLACE(s(n'''''), m''', cons(0, x'''))
IFREPLACE(false, s(0), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(0), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(0), x'''))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(s(m''''')), x'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 16
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
IFREPLACE(false, s(s(n''')), m'', cons(s(s(m''''')), x')) -> REPLACE(s(s(n''')), m'', x')
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(s(m''''')), x'''))
REPLACE(s(s(n')), m, cons(s(0), x)) -> IFREPLACE(false, s(s(n')), m, cons(s(0), x))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(0), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(0), x'''))
IFREPLACE(false, s(0), m'', cons(s(s(m''''')), x'')) -> REPLACE(s(0), m'', x'')
REPLACE(s(0), m, cons(s(s(m''')), x)) -> IFREPLACE(false, s(0), m, cons(s(s(m''')), x))
IFREPLACE(false, s(0), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(n'''''), m''', cons(0, cons(0, x'''))) -> REPLACE(s(n'''''), m''', cons(0, x'''))
REPLACE(s(n''), m, cons(0, x)) -> IFREPLACE(false, s(n''), m, cons(0, x))
IFREPLACE(false, s(s(n''')), m'', cons(s(0), x'')) -> REPLACE(s(s(n''')), m'', x'')
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
four new Dependency Pairs are created:
REPLACE(s(n''), m, cons(0, x)) -> IFREPLACE(false, s(n''), m, cons(0, x))
REPLACE(s(n'''), m', cons(0, cons(0, x'''''))) -> IFREPLACE(false, s(n'''), m', cons(0, cons(0, x''''')))
REPLACE(s(0), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(0), m', cons(0, cons(s(s(m''''''')), x''''')))
REPLACE(s(s(n''''')), m', cons(0, cons(s(0), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(0), x''''')))
REPLACE(s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 18
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(s(m''''')), x'''))
REPLACE(s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x''''')))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(0), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(0), x'''))
REPLACE(s(s(n''''')), m', cons(0, cons(s(0), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(0), x''''')))
IFREPLACE(false, s(0), m'', cons(s(s(m''''')), x'')) -> REPLACE(s(0), m'', x'')
REPLACE(s(0), m, cons(s(s(m''')), x)) -> IFREPLACE(false, s(0), m, cons(s(s(m''')), x))
IFREPLACE(false, s(0), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
REPLACE(s(0), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(0), m', cons(0, cons(s(s(m''''''')), x''''')))
IFREPLACE(false, s(n'''''), m''', cons(0, cons(0, x'''))) -> REPLACE(s(n'''''), m''', cons(0, x'''))
REPLACE(s(n'''), m', cons(0, cons(0, x'''''))) -> IFREPLACE(false, s(n'''), m', cons(0, cons(0, x''''')))
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
IFREPLACE(false, s(s(n''')), m'', cons(s(0), x'')) -> REPLACE(s(s(n''')), m'', x'')
REPLACE(s(s(n')), m, cons(s(0), x)) -> IFREPLACE(false, s(s(n')), m, cons(s(0), x))
IFREPLACE(false, s(s(n''')), m'', cons(s(s(m''''')), x')) -> REPLACE(s(s(n''')), m'', x')
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
three new Dependency Pairs are created:
IFREPLACE(false, s(0), m'', cons(s(s(m''''')), x'')) -> REPLACE(s(0), m'', x'')
IFREPLACE(false, s(0), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(0), m'''', cons(s(s(m''''')), cons(0, cons(0, x''''''')))) -> REPLACE(s(0), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(0), m'''', cons(s(s(m''''')), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(0), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 20
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
REPLACE(s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x''''')))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(0), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(0), x'''))
REPLACE(s(s(n''''')), m', cons(0, cons(s(0), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(0), x''''')))
IFREPLACE(false, s(0), m'''', cons(s(s(m''''')), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(0), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
IFREPLACE(false, s(0), m'''', cons(s(s(m''''')), cons(0, cons(0, x''''''')))) -> REPLACE(s(0), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(0), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
REPLACE(s(0), m, cons(s(s(m''')), x)) -> IFREPLACE(false, s(0), m, cons(s(s(m''')), x))
IFREPLACE(false, s(0), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
REPLACE(s(0), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(0), m', cons(0, cons(s(s(m''''''')), x''''')))
IFREPLACE(false, s(n'''''), m''', cons(0, cons(0, x'''))) -> REPLACE(s(n'''''), m''', cons(0, x'''))
REPLACE(s(n'''), m', cons(0, cons(0, x'''''))) -> IFREPLACE(false, s(n'''), m', cons(0, cons(0, x''''')))
IFREPLACE(false, s(s(n''')), m'', cons(s(0), x'')) -> REPLACE(s(s(n''')), m'', x'')
REPLACE(s(s(n')), m, cons(s(0), x)) -> IFREPLACE(false, s(s(n')), m, cons(s(0), x))
IFREPLACE(false, s(s(n''')), m'', cons(s(s(m''''')), x')) -> REPLACE(s(s(n''')), m'', x')
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(s(m''''')), x'''))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
five new Dependency Pairs are created:
IFREPLACE(false, s(s(n''')), m'', cons(s(0), x'')) -> REPLACE(s(s(n''')), m'', x'')
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(0), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(0), x'''))
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(s(n''''')), m'''', cons(s(0), cons(0, cons(0, x''''''')))) -> REPLACE(s(s(n''''')), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(s(n'''')), m'''', cons(s(0), cons(0, cons(s(0), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(0), x''''''')))
IFREPLACE(false, s(s(n'''')), m'''', cons(s(0), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 21
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
IFREPLACE(false, s(s(n'''')), m'''', cons(s(0), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
IFREPLACE(false, s(s(n'''')), m'''', cons(s(0), cons(0, cons(s(0), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(0), x''''''')))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(0), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(0), x'''))
REPLACE(s(s(n''''')), m', cons(0, cons(s(0), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(0), x''''')))
IFREPLACE(false, s(0), m'''', cons(s(s(m''''')), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(0), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
IFREPLACE(false, s(0), m'''', cons(s(s(m''''')), cons(0, cons(0, x''''''')))) -> REPLACE(s(0), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(0), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
REPLACE(s(0), m, cons(s(s(m''')), x)) -> IFREPLACE(false, s(0), m, cons(s(s(m''')), x))
IFREPLACE(false, s(0), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
REPLACE(s(0), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(0), m', cons(0, cons(s(s(m''''''')), x''''')))
IFREPLACE(false, s(n'''''), m''', cons(0, cons(0, x'''))) -> REPLACE(s(n'''''), m''', cons(0, x'''))
REPLACE(s(n'''), m', cons(0, cons(0, x'''''))) -> IFREPLACE(false, s(n'''), m', cons(0, cons(0, x''''')))
IFREPLACE(false, s(s(n''''')), m'''', cons(s(0), cons(0, cons(0, x''''''')))) -> REPLACE(s(s(n''''')), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(0), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(0), x'''))
REPLACE(s(s(n')), m, cons(s(0), x)) -> IFREPLACE(false, s(s(n')), m, cons(s(0), x))
IFREPLACE(false, s(s(n''')), m'', cons(s(s(m''''')), x')) -> REPLACE(s(s(n''')), m'', x')
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(s(m''''')), x'''))
REPLACE(s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x''''')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
five new Dependency Pairs are created:
IFREPLACE(false, s(s(n''')), m'', cons(s(s(m''''')), x')) -> REPLACE(s(s(n''')), m'', x')
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(0), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(0), x'''))
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(s(n''''')), m'''', cons(s(s(m''''')), cons(0, cons(0, x''''''')))) -> REPLACE(s(s(n''''')), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(s(n'''')), m'''', cons(s(s(m''''')), cons(0, cons(s(0), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(0), x''''''')))
IFREPLACE(false, s(s(n'''')), m'''', cons(s(s(m''''')), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 22
↳Polynomial Ordering
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
IFREPLACE(false, s(s(n'''')), m'''', cons(s(s(m''''')), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
IFREPLACE(false, s(s(n'''')), m'''', cons(s(s(m''''')), cons(0, cons(s(0), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(0), x''''''')))
IFREPLACE(false, s(s(n''''')), m'''', cons(s(s(m''''')), cons(0, cons(0, x''''''')))) -> REPLACE(s(s(n''''')), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(s(n'''')), m'''', cons(s(0), cons(0, cons(s(0), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(0), x''''''')))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(0), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(0), x'''))
REPLACE(s(s(n''''')), m', cons(0, cons(s(0), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(0), x''''')))
IFREPLACE(false, s(0), m'''', cons(s(s(m''''')), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(0), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
IFREPLACE(false, s(0), m'''', cons(s(s(m''''')), cons(0, cons(0, x''''''')))) -> REPLACE(s(0), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(0), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
REPLACE(s(0), m, cons(s(s(m''')), x)) -> IFREPLACE(false, s(0), m, cons(s(s(m''')), x))
IFREPLACE(false, s(0), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
REPLACE(s(0), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(0), m', cons(0, cons(s(s(m''''''')), x''''')))
IFREPLACE(false, s(n'''''), m''', cons(0, cons(0, x'''))) -> REPLACE(s(n'''''), m''', cons(0, x'''))
REPLACE(s(n'''), m', cons(0, cons(0, x'''''))) -> IFREPLACE(false, s(n'''), m', cons(0, cons(0, x''''')))
IFREPLACE(false, s(s(n''''')), m'''', cons(s(0), cons(0, cons(0, x''''''')))) -> REPLACE(s(s(n''''')), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(0), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(0), x'''))
REPLACE(s(s(n')), m, cons(s(0), x)) -> IFREPLACE(false, s(s(n')), m, cons(s(0), x))
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(0), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(0), x'''))
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(s(m''''')), x'''))
REPLACE(s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x''''')))
IFREPLACE(false, s(s(n'''')), m'''', cons(s(0), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(0), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(0), x'''))
IFREPLACE(false, s(0), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(n'''''), m''', cons(0, cons(0, x'''))) -> REPLACE(s(n'''''), m''', cons(0, x'''))
IFREPLACE(false, s(s(n''')), m''', cons(0, cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n''')), m''', cons(s(s(m''''')), x'''))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
POL(REPLACE(x1, x2, x3)) = x3 POL(eq(x1, x2)) = 0 POL(0) = 1 POL(false) = 0 POL(cons(x1, x2)) = x1 + x2 POL(IF_REPLACE(x1, x2, x3, x4)) = x4 POL(true) = 0 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 24
↳Dependency Graph
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
IFREPLACE(false, s(s(n'''')), m'''', cons(s(s(m''''')), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
IFREPLACE(false, s(s(n'''')), m'''', cons(s(s(m''''')), cons(0, cons(s(0), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(0), x''''''')))
IFREPLACE(false, s(s(n''''')), m'''', cons(s(s(m''''')), cons(0, cons(0, x''''''')))) -> REPLACE(s(s(n''''')), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(s(n'''')), m'''', cons(s(0), cons(0, cons(s(0), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(0), x''''''')))
REPLACE(s(s(n''''')), m', cons(0, cons(s(0), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(0), x''''')))
IFREPLACE(false, s(0), m'''', cons(s(s(m''''')), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(0), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
IFREPLACE(false, s(0), m'''', cons(s(s(m''''')), cons(0, cons(0, x''''''')))) -> REPLACE(s(0), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(0), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
REPLACE(s(0), m, cons(s(s(m''')), x)) -> IFREPLACE(false, s(0), m, cons(s(s(m''')), x))
REPLACE(s(0), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(0), m', cons(0, cons(s(s(m''''''')), x''''')))
REPLACE(s(n'''), m', cons(0, cons(0, x'''''))) -> IFREPLACE(false, s(n'''), m', cons(0, cons(0, x''''')))
IFREPLACE(false, s(s(n''''')), m'''', cons(s(0), cons(0, cons(0, x''''''')))) -> REPLACE(s(s(n''''')), m'''', cons(0, cons(0, x''''''')))
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(0), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(0), x'''))
REPLACE(s(s(n')), m, cons(s(0), x)) -> IFREPLACE(false, s(s(n')), m, cons(s(0), x))
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(0), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(0), x'''))
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
REPLACE(s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x'''''))) -> IFREPLACE(false, s(s(n''''')), m', cons(0, cons(s(s(m''''''')), x''''')))
IFREPLACE(false, s(s(n'''')), m'''', cons(s(0), cons(0, cons(s(s(m''''''''')), x''''''')))) -> REPLACE(s(s(n'''')), m'''', cons(0, cons(s(s(m''''''''')), x''''''')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 25
↳Polynomial Ordering
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(0), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(0), x'''))
REPLACE(s(s(n')), m, cons(s(0), x)) -> IFREPLACE(false, s(s(n')), m, cons(s(0), x))
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(0), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(0), x'''))
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
IFREPLACE(false, s(s(n'''')), m''', cons(s(0), cons(s(0), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(0), x'''))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
POL(REPLACE(x1, x2, x3)) = x3 POL(eq(x1, x2)) = 0 POL(0) = 1 POL(false) = 0 POL(cons(x1, x2)) = x1 + x2 POL(IF_REPLACE(x1, x2, x3, x4)) = x4 POL(true) = 0 POL(s(x1)) = x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 27
↳Dependency Graph
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
REPLACE(s(s(n')), m, cons(s(0), x)) -> IFREPLACE(false, s(s(n')), m, cons(s(0), x))
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(0), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(0), x'''))
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 29
↳Polynomial Ordering
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
IFREPLACE(false, s(s(n'''')), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(s(n'''')), m''', cons(s(s(m''''')), x'''))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
POL(REPLACE(x1, x2, x3)) = x3 POL(eq(x1, x2)) = 0 POL(0) = 0 POL(false) = 0 POL(cons(x1, x2)) = 1 + x2 POL(IF_REPLACE(x1, x2, x3, x4)) = x4 POL(true) = 0 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 30
↳Dependency Graph
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
REPLACE(s(s(n')), m, cons(s(s(m''')), x)) -> IFREPLACE(eq(n', m'''), s(s(n')), m, cons(s(s(m''')), x))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 26
↳Polynomial Ordering
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
REPLACE(s(0), m, cons(s(s(m''')), x)) -> IFREPLACE(false, s(0), m, cons(s(s(m''')), x))
IFREPLACE(false, s(0), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
IFREPLACE(false, s(0), m''', cons(s(s(m''''')), cons(s(s(m''''')), x'''))) -> REPLACE(s(0), m''', cons(s(s(m''''')), x'''))
POL(REPLACE(x1, x2, x3)) = x3 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(false) = 0 POL(IF_REPLACE(x1, x2, x3, x4)) = x4 POL(s(x1)) = 1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 28
↳Dependency Graph
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
REPLACE(s(0), m, cons(s(s(m''')), x)) -> IFREPLACE(false, s(0), m, cons(s(s(m''')), x))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 15
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
IFREPLACE(false, 0, m'', cons(s(m''''), x'')) -> REPLACE(0, m'', x'')
REPLACE(0, m, cons(s(m''), x)) -> IFREPLACE(false, 0, m, cons(s(m''), x))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
IFREPLACE(false, 0, m'', cons(s(m''''), x'')) -> REPLACE(0, m'', x'')
IFREPLACE(false, 0, m''0, cons(s(m''''), cons(s(m''''), x'''))) -> REPLACE(0, m''0, cons(s(m''''), x'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 17
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
IFREPLACE(false, 0, m''0, cons(s(m''''), cons(s(m''''), x'''))) -> REPLACE(0, m''0, cons(s(m''''), x'''))
REPLACE(0, m, cons(s(m''), x)) -> IFREPLACE(false, 0, m, cons(s(m''), x))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
REPLACE(0, m, cons(s(m''), x)) -> IFREPLACE(false, 0, m, cons(s(m''), x))
REPLACE(0, m', cons(s(m'''), cons(s(m'''''''), x'''''))) -> IFREPLACE(false, 0, m', cons(s(m'''), cons(s(m'''''''), x''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 19
↳Polynomial Ordering
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
REPLACE(0, m', cons(s(m'''), cons(s(m'''''''), x'''''))) -> IFREPLACE(false, 0, m', cons(s(m'''), cons(s(m'''''''), x''''')))
IFREPLACE(false, 0, m''0, cons(s(m''''), cons(s(m''''), x'''))) -> REPLACE(0, m''0, cons(s(m''''), x'''))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
IFREPLACE(false, 0, m''0, cons(s(m''''), cons(s(m''''), x'''))) -> REPLACE(0, m''0, cons(s(m''''), x'''))
POL(REPLACE(x1, x2, x3)) = x3 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(false) = 0 POL(IF_REPLACE(x1, x2, x3, x4)) = x4 POL(s(x1)) = 1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 23
↳Dependency Graph
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
REPLACE(0, m', cons(s(m'''), cons(s(m'''''''), x'''''))) -> IFREPLACE(false, 0, m', cons(s(m'''), cons(s(m'''''''), x''''')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Narrowing Transformation
→DP Problem 5
↳Nar
IFMIN(false, cons(n, cons(m, x))) -> MIN(cons(m, x))
IFMIN(true, cons(n, cons(m, x))) -> MIN(cons(n, x))
MIN(cons(n, cons(m, x))) -> IFMIN(le(n, m), cons(n, cons(m, x)))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
three new Dependency Pairs are created:
MIN(cons(n, cons(m, x))) -> IFMIN(le(n, m), cons(n, cons(m, x)))
MIN(cons(0, cons(m'', x))) -> IFMIN(true, cons(0, cons(m'', x)))
MIN(cons(s(n''), cons(0, x))) -> IFMIN(false, cons(s(n''), cons(0, x)))
MIN(cons(s(n''), cons(s(m''), x))) -> IFMIN(le(n'', m''), cons(s(n''), cons(s(m''), x)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Narrowing Transformation
→DP Problem 5
↳Nar
MIN(cons(s(n''), cons(s(m''), x))) -> IFMIN(le(n'', m''), cons(s(n''), cons(s(m''), x)))
MIN(cons(s(n''), cons(0, x))) -> IFMIN(false, cons(s(n''), cons(0, x)))
IFMIN(true, cons(n, cons(m, x))) -> MIN(cons(n, x))
MIN(cons(0, cons(m'', x))) -> IFMIN(true, cons(0, cons(m'', x)))
IFMIN(false, cons(n, cons(m, x))) -> MIN(cons(m, x))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
three new Dependency Pairs are created:
MIN(cons(s(n''), cons(s(m''), x))) -> IFMIN(le(n'', m''), cons(s(n''), cons(s(m''), x)))
MIN(cons(s(0), cons(s(m'''), x))) -> IFMIN(true, cons(s(0), cons(s(m'''), x)))
MIN(cons(s(s(n')), cons(s(0), x))) -> IFMIN(false, cons(s(s(n')), cons(s(0), x)))
MIN(cons(s(s(n')), cons(s(s(m')), x))) -> IFMIN(le(n', m'), cons(s(s(n')), cons(s(s(m')), x)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 32
↳Instantiation Transformation
→DP Problem 5
↳Nar
MIN(cons(s(s(n')), cons(s(s(m')), x))) -> IFMIN(le(n', m'), cons(s(s(n')), cons(s(s(m')), x)))
MIN(cons(s(s(n')), cons(s(0), x))) -> IFMIN(false, cons(s(s(n')), cons(s(0), x)))
MIN(cons(s(0), cons(s(m'''), x))) -> IFMIN(true, cons(s(0), cons(s(m'''), x)))
IFMIN(true, cons(n, cons(m, x))) -> MIN(cons(n, x))
MIN(cons(0, cons(m'', x))) -> IFMIN(true, cons(0, cons(m'', x)))
IFMIN(false, cons(n, cons(m, x))) -> MIN(cons(m, x))
MIN(cons(s(n''), cons(0, x))) -> IFMIN(false, cons(s(n''), cons(0, x)))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
three new Dependency Pairs are created:
IFMIN(true, cons(n, cons(m, x))) -> MIN(cons(n, x))
IFMIN(true, cons(0, cons(m', x''))) -> MIN(cons(0, x''))
IFMIN(true, cons(s(0), cons(s(m'''''), x''))) -> MIN(cons(s(0), x''))
IFMIN(true, cons(s(s(n''')), cons(s(s(m''')), x'))) -> MIN(cons(s(s(n''')), x'))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 33
↳Forward Instantiation Transformation
→DP Problem 5
↳Nar
IFMIN(true, cons(0, cons(m', x''))) -> MIN(cons(0, x''))
MIN(cons(0, cons(m'', x))) -> IFMIN(true, cons(0, cons(m'', x)))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
IFMIN(true, cons(0, cons(m', x''))) -> MIN(cons(0, x''))
IFMIN(true, cons(0, cons(m', cons(m'''', x''')))) -> MIN(cons(0, cons(m'''', x''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 35
↳Forward Instantiation Transformation
→DP Problem 5
↳Nar
IFMIN(true, cons(0, cons(m', cons(m'''', x''')))) -> MIN(cons(0, cons(m'''', x''')))
MIN(cons(0, cons(m'', x))) -> IFMIN(true, cons(0, cons(m'', x)))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
MIN(cons(0, cons(m'', x))) -> IFMIN(true, cons(0, cons(m'', x)))
MIN(cons(0, cons(m'''', cons(m'''''', x''''')))) -> IFMIN(true, cons(0, cons(m'''', cons(m'''''', x'''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 38
↳Polynomial Ordering
→DP Problem 5
↳Nar
MIN(cons(0, cons(m'''', cons(m'''''', x''''')))) -> IFMIN(true, cons(0, cons(m'''', cons(m'''''', x'''''))))
IFMIN(true, cons(0, cons(m', cons(m'''', x''')))) -> MIN(cons(0, cons(m'''', x''')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
IFMIN(true, cons(0, cons(m', cons(m'''', x''')))) -> MIN(cons(0, cons(m'''', x''')))
POL(0) = 0 POL(cons(x1, x2)) = 1 + x2 POL(MIN(x1)) = x1 POL(true) = 0 POL(IF_MIN(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 42
↳Dependency Graph
→DP Problem 5
↳Nar
MIN(cons(0, cons(m'''', cons(m'''''', x''''')))) -> IFMIN(true, cons(0, cons(m'''', cons(m'''''', x'''''))))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 34
↳Instantiation Transformation
→DP Problem 5
↳Nar
IFMIN(true, cons(s(s(n''')), cons(s(s(m''')), x'))) -> MIN(cons(s(s(n''')), x'))
MIN(cons(s(s(n')), cons(s(0), x))) -> IFMIN(false, cons(s(s(n')), cons(s(0), x)))
IFMIN(true, cons(s(0), cons(s(m'''''), x''))) -> MIN(cons(s(0), x''))
MIN(cons(s(0), cons(s(m'''), x))) -> IFMIN(true, cons(s(0), cons(s(m'''), x)))
MIN(cons(s(n''), cons(0, x))) -> IFMIN(false, cons(s(n''), cons(0, x)))
IFMIN(false, cons(n, cons(m, x))) -> MIN(cons(m, x))
MIN(cons(s(s(n')), cons(s(s(m')), x))) -> IFMIN(le(n', m'), cons(s(s(n')), cons(s(s(m')), x)))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
three new Dependency Pairs are created:
IFMIN(false, cons(n, cons(m, x))) -> MIN(cons(m, x))
IFMIN(false, cons(s(n''''), cons(0, x''))) -> MIN(cons(0, x''))
IFMIN(false, cons(s(s(n''')), cons(s(0), x''))) -> MIN(cons(s(0), x''))
IFMIN(false, cons(s(s(n''')), cons(s(s(m''')), x'))) -> MIN(cons(s(s(m''')), x'))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 36
↳Forward Instantiation Transformation
→DP Problem 5
↳Nar
IFMIN(true, cons(s(0), cons(s(m'''''), x''))) -> MIN(cons(s(0), x''))
MIN(cons(s(0), cons(s(m'''), x))) -> IFMIN(true, cons(s(0), cons(s(m'''), x)))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
IFMIN(true, cons(s(0), cons(s(m'''''), x''))) -> MIN(cons(s(0), x''))
IFMIN(true, cons(s(0), cons(s(m'''''), cons(s(m'''''), x''')))) -> MIN(cons(s(0), cons(s(m'''''), x''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 39
↳Polynomial Ordering
→DP Problem 5
↳Nar
IFMIN(true, cons(s(0), cons(s(m'''''), cons(s(m'''''), x''')))) -> MIN(cons(s(0), cons(s(m'''''), x''')))
MIN(cons(s(0), cons(s(m'''), x))) -> IFMIN(true, cons(s(0), cons(s(m'''), x)))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
IFMIN(true, cons(s(0), cons(s(m'''''), cons(s(m'''''), x''')))) -> MIN(cons(s(0), cons(s(m'''''), x''')))
POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(MIN(x1)) = x1 POL(true) = 0 POL(IF_MIN(x1, x2)) = x2 POL(s(x1)) = 1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 43
↳Dependency Graph
→DP Problem 5
↳Nar
MIN(cons(s(0), cons(s(m'''), x))) -> IFMIN(true, cons(s(0), cons(s(m'''), x)))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 37
↳Forward Instantiation Transformation
→DP Problem 5
↳Nar
IFMIN(false, cons(s(s(n''')), cons(s(s(m''')), x'))) -> MIN(cons(s(s(m''')), x'))
MIN(cons(s(s(n')), cons(s(s(m')), x))) -> IFMIN(le(n', m'), cons(s(s(n')), cons(s(s(m')), x)))
IFMIN(true, cons(s(s(n''')), cons(s(s(m''')), x'))) -> MIN(cons(s(s(n''')), x'))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
IFMIN(true, cons(s(s(n''')), cons(s(s(m''')), x'))) -> MIN(cons(s(s(n''')), x'))
IFMIN(true, cons(s(s(n'''')), cons(s(s(m''')), cons(s(s(m''')), x''')))) -> MIN(cons(s(s(n'''')), cons(s(s(m''')), x''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 40
↳Forward Instantiation Transformation
→DP Problem 5
↳Nar
IFMIN(true, cons(s(s(n'''')), cons(s(s(m''')), cons(s(s(m''')), x''')))) -> MIN(cons(s(s(n'''')), cons(s(s(m''')), x''')))
MIN(cons(s(s(n')), cons(s(s(m')), x))) -> IFMIN(le(n', m'), cons(s(s(n')), cons(s(s(m')), x)))
IFMIN(false, cons(s(s(n''')), cons(s(s(m''')), x'))) -> MIN(cons(s(s(m''')), x'))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
IFMIN(false, cons(s(s(n''')), cons(s(s(m''')), x'))) -> MIN(cons(s(s(m''')), x'))
IFMIN(false, cons(s(s(n''')), cons(s(s(m'''')), cons(s(s(m''0)), x''')))) -> MIN(cons(s(s(m'''')), cons(s(s(m''0)), x''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 41
↳Polynomial Ordering
→DP Problem 5
↳Nar
IFMIN(false, cons(s(s(n''')), cons(s(s(m'''')), cons(s(s(m''0)), x''')))) -> MIN(cons(s(s(m'''')), cons(s(s(m''0)), x''')))
MIN(cons(s(s(n')), cons(s(s(m')), x))) -> IFMIN(le(n', m'), cons(s(s(n')), cons(s(s(m')), x)))
IFMIN(true, cons(s(s(n'''')), cons(s(s(m''')), cons(s(s(m''')), x''')))) -> MIN(cons(s(s(n'''')), cons(s(s(m''')), x''')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
IFMIN(false, cons(s(s(n''')), cons(s(s(m'''')), cons(s(s(m''0)), x''')))) -> MIN(cons(s(s(m'''')), cons(s(s(m''0)), x''')))
IFMIN(true, cons(s(s(n'''')), cons(s(s(m''')), cons(s(s(m''')), x''')))) -> MIN(cons(s(s(n'''')), cons(s(s(m''')), x''')))
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
POL(0) = 0 POL(false) = 0 POL(cons(x1, x2)) = 1 + x2 POL(MIN(x1)) = x1 POL(true) = 0 POL(s(x1)) = 0 POL(IF_MIN(x1, x2)) = x2 POL(le(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 31
↳Nar
...
→DP Problem 44
↳Dependency Graph
→DP Problem 5
↳Nar
MIN(cons(s(s(n')), cons(s(s(m')), x))) -> IFMIN(le(n', m'), cons(s(s(n')), cons(s(s(m')), x)))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Narrowing Transformation
SORT(cons(n, x)) -> SORT(replace(min(cons(n, x)), n, x))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
five new Dependency Pairs are created:
SORT(cons(n, x)) -> SORT(replace(min(cons(n, x)), n, x))
SORT(cons(n'', nil)) -> SORT(nil)
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(min(cons(n'', cons(k', x''))), k'), min(cons(n'', cons(k', x''))), n'', cons(k', x'')))
SORT(cons(0, nil)) -> SORT(replace(0, 0, nil))
SORT(cons(s(n''), nil)) -> SORT(replace(s(n''), s(n''), nil))
SORT(cons(n'', cons(m', x''))) -> SORT(replace(ifmin(le(n'', m'), cons(n'', cons(m', x''))), n'', cons(m', x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
→DP Problem 45
↳Rewriting Transformation
SORT(cons(n'', cons(m', x''))) -> SORT(replace(ifmin(le(n'', m'), cons(n'', cons(m', x''))), n'', cons(m', x'')))
SORT(cons(s(n''), nil)) -> SORT(replace(s(n''), s(n''), nil))
SORT(cons(0, nil)) -> SORT(replace(0, 0, nil))
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(min(cons(n'', cons(k', x''))), k'), min(cons(n'', cons(k', x''))), n'', cons(k', x'')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(min(cons(n'', cons(k', x''))), k'), min(cons(n'', cons(k', x''))), n'', cons(k', x'')))
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', k'), cons(n'', cons(k', x''))), k'), min(cons(n'', cons(k', x''))), n'', cons(k', x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
→DP Problem 45
↳Rw
...
→DP Problem 46
↳Rewriting Transformation
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', k'), cons(n'', cons(k', x''))), k'), min(cons(n'', cons(k', x''))), n'', cons(k', x'')))
SORT(cons(s(n''), nil)) -> SORT(replace(s(n''), s(n''), nil))
SORT(cons(0, nil)) -> SORT(replace(0, 0, nil))
SORT(cons(n'', cons(m', x''))) -> SORT(replace(ifmin(le(n'', m'), cons(n'', cons(m', x''))), n'', cons(m', x'')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
SORT(cons(0, nil)) -> SORT(replace(0, 0, nil))
SORT(cons(0, nil)) -> SORT(nil)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
→DP Problem 45
↳Rw
...
→DP Problem 47
↳Rewriting Transformation
SORT(cons(n'', cons(m', x''))) -> SORT(replace(ifmin(le(n'', m'), cons(n'', cons(m', x''))), n'', cons(m', x'')))
SORT(cons(s(n''), nil)) -> SORT(replace(s(n''), s(n''), nil))
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', k'), cons(n'', cons(k', x''))), k'), min(cons(n'', cons(k', x''))), n'', cons(k', x'')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
SORT(cons(s(n''), nil)) -> SORT(replace(s(n''), s(n''), nil))
SORT(cons(s(n''), nil)) -> SORT(nil)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
→DP Problem 45
↳Rw
...
→DP Problem 48
↳Rewriting Transformation
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', k'), cons(n'', cons(k', x''))), k'), min(cons(n'', cons(k', x''))), n'', cons(k', x'')))
SORT(cons(n'', cons(m', x''))) -> SORT(replace(ifmin(le(n'', m'), cons(n'', cons(m', x''))), n'', cons(m', x'')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
SORT(cons(n'', cons(m', x''))) -> SORT(replace(ifmin(le(n'', m'), cons(n'', cons(m', x''))), n'', cons(m', x'')))
SORT(cons(n'', cons(m', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', m'), cons(n'', cons(m', x''))), m'), ifmin(le(n'', m'), cons(n'', cons(m', x''))), n'', cons(m', x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
→DP Problem 45
↳Rw
...
→DP Problem 49
↳Rewriting Transformation
SORT(cons(n'', cons(m', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', m'), cons(n'', cons(m', x''))), m'), ifmin(le(n'', m'), cons(n'', cons(m', x''))), n'', cons(m', x'')))
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', k'), cons(n'', cons(k', x''))), k'), min(cons(n'', cons(k', x''))), n'', cons(k', x'')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
one new Dependency Pair is created:
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', k'), cons(n'', cons(k', x''))), k'), min(cons(n'', cons(k', x''))), n'', cons(k', x'')))
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', k'), cons(n'', cons(k', x''))), k'), ifmin(le(n'', k'), cons(n'', cons(k', x''))), n'', cons(k', x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
→DP Problem 45
↳Rw
...
→DP Problem 50
↳Polynomial Ordering
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', k'), cons(n'', cons(k', x''))), k'), ifmin(le(n'', k'), cons(n'', cons(k', x''))), n'', cons(k', x'')))
SORT(cons(n'', cons(m', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', m'), cons(n'', cons(m', x''))), m'), ifmin(le(n'', m'), cons(n'', cons(m', x''))), n'', cons(m', x'')))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost
SORT(cons(n'', cons(k', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', k'), cons(n'', cons(k', x''))), k'), ifmin(le(n'', k'), cons(n'', cons(k', x''))), n'', cons(k', x'')))
SORT(cons(n'', cons(m', x''))) -> SORT(ifreplace(eq(ifmin(le(n'', m'), cons(n'', cons(m', x''))), m'), ifmin(le(n'', m'), cons(n'', cons(m', x''))), n'', cons(m', x'')))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
POL(false) = 0 POL(true) = 0 POL(replace(x1, x2, x3)) = x3 POL(if_min(x1, x2)) = 0 POL(SORT(x1)) = x1 POL(eq(x1, x2)) = 0 POL(0) = 0 POL(cons(x1, x2)) = 1 + x2 POL(min(x1)) = 0 POL(nil) = 0 POL(s(x1)) = 0 POL(le(x1, x2)) = 0 POL(if_replace(x1, x2, x3, x4)) = x4
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 5
↳Nar
→DP Problem 45
↳Rw
...
→DP Problem 51
↳Dependency Graph
eq(0, 0) -> true
eq(0, s(m)) -> false
eq(s(n), 0) -> false
eq(s(n), s(m)) -> eq(n, m)
le(0, m) -> true
le(s(n), 0) -> false
le(s(n), s(m)) -> le(n, m)
min(cons(0, nil)) -> 0
min(cons(s(n), nil)) -> s(n)
min(cons(n, cons(m, x))) -> ifmin(le(n, m), cons(n, cons(m, x)))
ifmin(true, cons(n, cons(m, x))) -> min(cons(n, x))
ifmin(false, cons(n, cons(m, x))) -> min(cons(m, x))
replace(n, m, nil) -> nil
replace(n, m, cons(k, x)) -> ifreplace(eq(n, k), n, m, cons(k, x))
ifreplace(true, n, m, cons(k, x)) -> cons(m, x)
ifreplace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x))
sort(nil) -> nil
sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
innermost