R
↳Dependency Pair Analysis
F(s(x)) -> F(x)
G(s(x), s(y)) -> IF(f(x), s(x), s(y))
G(s(x), s(y)) -> F(x)
G(x, c(y)) -> G(x, g(s(c(y)), y))
G(x, c(y)) -> G(s(c(y)), y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
F(s(x)) -> F(x)
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
one new Dependency Pair is created:
F(s(x)) -> F(x)
F(s(s(x''))) -> F(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
F(s(s(x''))) -> F(s(x''))
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(s(x''))
F(s(s(s(x'''')))) -> F(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
F(s(s(s(x'''')))) -> F(s(s(x'''')))
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
F(s(s(s(x'''')))) -> F(s(s(x'''')))
trivial
F(x1) -> F(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
G(x, c(y)) -> G(s(c(y)), y)
G(x, c(y)) -> G(x, g(s(c(y)), y))
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
two new Dependency Pairs are created:
G(x, c(y)) -> G(x, g(s(c(y)), y))
G(x, c(s(y''))) -> G(x, if(f(c(s(y''))), s(c(s(y''))), s(y'')))
G(x, c(c(y''))) -> G(x, g(s(c(c(y''))), g(s(c(y'')), y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Narrowing Transformation
G(x, c(c(y''))) -> G(x, g(s(c(c(y''))), g(s(c(y'')), y'')))
G(x, c(s(y''))) -> G(x, if(f(c(s(y''))), s(c(s(y''))), s(y'')))
G(x, c(y)) -> G(s(c(y)), y)
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
no new Dependency Pairs are created.
G(x, c(s(y''))) -> G(x, if(f(c(s(y''))), s(c(s(y''))), s(y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
G(x, c(y)) -> G(s(c(y)), y)
G(x, c(c(y''))) -> G(x, g(s(c(c(y''))), g(s(c(y'')), y'')))
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
two new Dependency Pairs are created:
G(x, c(c(y''))) -> G(x, g(s(c(c(y''))), g(s(c(y'')), y'')))
G(x, c(c(s(y')))) -> G(x, g(s(c(c(s(y')))), if(f(c(s(y'))), s(c(s(y'))), s(y'))))
G(x, c(c(c(y')))) -> G(x, g(s(c(c(c(y')))), g(s(c(c(y'))), g(s(c(y')), y'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Narrowing Transformation
G(x, c(c(c(y')))) -> G(x, g(s(c(c(c(y')))), g(s(c(c(y'))), g(s(c(y')), y'))))
G(x, c(c(s(y')))) -> G(x, g(s(c(c(s(y')))), if(f(c(s(y'))), s(c(s(y'))), s(y'))))
G(x, c(y)) -> G(s(c(y)), y)
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
no new Dependency Pairs are created.
G(x, c(c(s(y')))) -> G(x, g(s(c(c(s(y')))), if(f(c(s(y'))), s(c(s(y'))), s(y'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Forward Instantiation Transformation
G(x, c(y)) -> G(s(c(y)), y)
G(x, c(c(c(y')))) -> G(x, g(s(c(c(c(y')))), g(s(c(c(y'))), g(s(c(y')), y'))))
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
two new Dependency Pairs are created:
G(x, c(y)) -> G(s(c(y)), y)
G(x, c(c(y''))) -> G(s(c(c(y''))), c(y''))
G(x, c(c(c(c(y'''))))) -> G(s(c(c(c(c(y'''))))), c(c(c(y'''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Forward Instantiation Transformation
G(x, c(c(c(c(y'''))))) -> G(s(c(c(c(c(y'''))))), c(c(c(y'''))))
G(x, c(c(y''))) -> G(s(c(c(y''))), c(y''))
G(x, c(c(c(y')))) -> G(x, g(s(c(c(c(y')))), g(s(c(c(y'))), g(s(c(y')), y'))))
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
three new Dependency Pairs are created:
G(x, c(c(y''))) -> G(s(c(c(y''))), c(y''))
G(x, c(c(c(c(y''''))))) -> G(s(c(c(c(c(y''''))))), c(c(c(y''''))))
G(x, c(c(c(y'''')))) -> G(s(c(c(c(y'''')))), c(c(y'''')))
G(x, c(c(c(c(c(y''''')))))) -> G(s(c(c(c(c(c(y''''')))))), c(c(c(c(y''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 11
↳Argument Filtering and Ordering
G(x, c(c(c(c(c(y''''')))))) -> G(s(c(c(c(c(c(y''''')))))), c(c(c(c(y''''')))))
G(x, c(c(c(y'''')))) -> G(s(c(c(c(y'''')))), c(c(y'''')))
G(x, c(c(c(c(y''''))))) -> G(s(c(c(c(c(y''''))))), c(c(c(y''''))))
G(x, c(c(c(y')))) -> G(x, g(s(c(c(c(y')))), g(s(c(c(y'))), g(s(c(y')), y'))))
G(x, c(c(c(c(y'''))))) -> G(s(c(c(c(c(y'''))))), c(c(c(y'''))))
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
G(x, c(c(c(c(c(y''''')))))) -> G(s(c(c(c(c(c(y''''')))))), c(c(c(c(y''''')))))
G(x, c(c(c(y'''')))) -> G(s(c(c(c(y'''')))), c(c(y'''')))
G(x, c(c(c(c(y''''))))) -> G(s(c(c(c(c(y''''))))), c(c(c(y''''))))
G(x, c(c(c(y')))) -> G(x, g(s(c(c(c(y')))), g(s(c(c(y'))), g(s(c(y')), y'))))
G(x, c(c(c(c(y'''))))) -> G(s(c(c(c(c(y'''))))), c(c(c(y'''))))
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
if(true, x, y) -> x
if(false, x, y) -> y
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
{c, f, G, s} > true
{c, f, G, s} > g > if
{c, f, G, s} > false
G(x1, x2) -> G(x1, x2)
c(x1) -> c(x1)
g(x1, x2) -> g(x1, x2)
s(x1) -> s
if(x1, x2, x3) -> if(x1, x2, x3)
f(x1) -> f
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Dependency Graph
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost