R
↳Dependency Pair Analysis
F(s(x)) -> F(x)
G(s(x), s(y)) -> IF(f(x), s(x), s(y))
G(s(x), s(y)) -> F(x)
G(x, c(y)) -> G(x, g(s(c(y)), y))
G(x, c(y)) -> G(s(c(y)), y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
F(s(x)) -> F(x)
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
F(s(x)) -> F(x)
POL(s(x1)) = 1 + x1 POL(F(x1)) = x1
F(x1) -> F(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
G(x, c(y)) -> G(s(c(y)), y)
G(x, c(y)) -> G(x, g(s(c(y)), y))
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
G(x, c(y)) -> G(s(c(y)), y)
G(x, c(y)) -> G(x, g(s(c(y)), y))
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
if(true, x, y) -> x
if(false, x, y) -> y
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
POL(c(x1)) = 1 + x1 POL(if(x1, x2, x3)) = x1 + x2 + x3 POL(g(x1, x2)) = x1 + x2 POL(G(x1, x2)) = x1 + x2 POL(false) = 0 POL(true) = 0 POL(s) = 0 POL(f) = 0
G(x1, x2) -> G(x1, x2)
c(x1) -> c(x1)
g(x1, x2) -> g(x1, x2)
s(x1) -> s
if(x1, x2, x3) -> if(x1, x2, x3)
f(x1) -> f
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Dependency Graph
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost