R
↳Dependency Pair Analysis
F(s(x)) -> F(x)
G(s(x), s(y)) -> IF(f(x), s(x), s(y))
G(s(x), s(y)) -> F(x)
G(x, c(y)) -> G(x, g(s(c(y)), y))
G(x, c(y)) -> G(s(c(y)), y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
F(s(x)) -> F(x)
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
F(s(x)) -> F(x)
F(x1) -> F(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Nar
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Narrowing Transformation
G(x, c(y)) -> G(s(c(y)), y)
G(x, c(y)) -> G(x, g(s(c(y)), y))
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
two new Dependency Pairs are created:
G(x, c(y)) -> G(x, g(s(c(y)), y))
G(x, c(s(y''))) -> G(x, if(f(c(s(y''))), s(c(s(y''))), s(y'')))
G(x, c(c(y''))) -> G(x, g(s(c(c(y''))), g(s(c(y'')), y'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 4
↳Narrowing Transformation
G(x, c(c(y''))) -> G(x, g(s(c(c(y''))), g(s(c(y'')), y'')))
G(x, c(s(y''))) -> G(x, if(f(c(s(y''))), s(c(s(y''))), s(y'')))
G(x, c(y)) -> G(s(c(y)), y)
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
no new Dependency Pairs are created.
G(x, c(s(y''))) -> G(x, if(f(c(s(y''))), s(c(s(y''))), s(y'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 4
↳Nar
...
→DP Problem 5
↳Forward Instantiation Transformation
G(x, c(y)) -> G(s(c(y)), y)
G(x, c(c(y''))) -> G(x, g(s(c(c(y''))), g(s(c(y'')), y'')))
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost
two new Dependency Pairs are created:
G(x, c(y)) -> G(s(c(y)), y)
G(x, c(c(y''))) -> G(s(c(c(y''))), c(y''))
G(x, c(c(c(y'''')))) -> G(s(c(c(c(y'''')))), c(c(y'''')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 4
↳Nar
...
→DP Problem 6
↳Remaining Obligation(s)
G(x, c(c(c(y'''')))) -> G(s(c(c(c(y'''')))), c(c(y'''')))
G(x, c(c(y''))) -> G(s(c(c(y''))), c(y''))
G(x, c(c(y''))) -> G(x, g(s(c(c(y''))), g(s(c(y'')), y'')))
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, x, y) -> x
if(false, x, y) -> y
g(s(x), s(y)) -> if(f(x), s(x), s(y))
g(x, c(y)) -> g(x, g(s(c(y)), y))
innermost