R
↳Dependency Pair Analysis
SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y))
SUM(cons(0, x), y) -> SUM(x, y)
WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))
WEIGHT(cons(n, cons(m, x))) -> SUM(cons(n, cons(m, x)), cons(0, x))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
SUM(cons(0, x), y) -> SUM(x, y)
SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
two new Dependency Pairs are created:
SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y))
SUM(cons(s(s(n'')), x''), cons(m'', y'')) -> SUM(cons(s(n''), x''), cons(s(m''), y''))
SUM(cons(s(0), x''), cons(m', y'')) -> SUM(cons(0, x''), cons(s(m'), y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
SUM(cons(s(0), x''), cons(m', y'')) -> SUM(cons(0, x''), cons(s(m'), y''))
SUM(cons(s(s(n'')), x''), cons(m'', y'')) -> SUM(cons(s(n''), x''), cons(s(m''), y''))
SUM(cons(0, x), y) -> SUM(x, y)
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
three new Dependency Pairs are created:
SUM(cons(0, x), y) -> SUM(x, y)
SUM(cons(0, cons(0, x'')), y'') -> SUM(cons(0, x''), y'')
SUM(cons(0, cons(s(s(n'''')), x'''')), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(m'''', y''''))
SUM(cons(0, cons(s(0), x'''')), cons(m''', y'''')) -> SUM(cons(s(0), x''''), cons(m''', y''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
SUM(cons(0, cons(s(0), x'''')), cons(m''', y'''')) -> SUM(cons(s(0), x''''), cons(m''', y''''))
SUM(cons(s(s(n'')), x''), cons(m'', y'')) -> SUM(cons(s(n''), x''), cons(s(m''), y''))
SUM(cons(0, cons(s(s(n'''')), x'''')), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(m'''', y''''))
SUM(cons(0, cons(0, x'')), y'') -> SUM(cons(0, x''), y'')
SUM(cons(s(0), x''), cons(m', y'')) -> SUM(cons(0, x''), cons(s(m'), y''))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
two new Dependency Pairs are created:
SUM(cons(s(s(n'')), x''), cons(m'', y'')) -> SUM(cons(s(n''), x''), cons(s(m''), y''))
SUM(cons(s(s(s(n''''))), x''''), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(s(m''''), y''''))
SUM(cons(s(s(0)), x''''), cons(m'''', y'''')) -> SUM(cons(s(0), x''''), cons(s(m''''), y''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
SUM(cons(s(s(0)), x''''), cons(m'''', y'''')) -> SUM(cons(s(0), x''''), cons(s(m''''), y''''))
SUM(cons(s(s(s(n''''))), x''''), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(s(m''''), y''''))
SUM(cons(0, cons(s(s(n'''')), x'''')), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(m'''', y''''))
SUM(cons(0, cons(0, x'')), y'') -> SUM(cons(0, x''), y'')
SUM(cons(s(0), x''), cons(m', y'')) -> SUM(cons(0, x''), cons(s(m'), y''))
SUM(cons(0, cons(s(0), x'''')), cons(m''', y'''')) -> SUM(cons(s(0), x''''), cons(m''', y''''))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
three new Dependency Pairs are created:
SUM(cons(s(0), x''), cons(m', y'')) -> SUM(cons(0, x''), cons(s(m'), y''))
SUM(cons(s(0), cons(0, x'''')), cons(m'', y'''')) -> SUM(cons(0, cons(0, x'''')), cons(s(m''), y''''))
SUM(cons(s(0), cons(s(s(n'''''')), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(s(n'''''')), x'''''')), cons(s(m''), y'''))
SUM(cons(s(0), cons(s(0), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(0), x'''''')), cons(s(m''), y'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
SUM(cons(s(0), cons(s(0), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(0), x'''''')), cons(s(m''), y'''))
SUM(cons(s(0), cons(s(s(n'''''')), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(s(n'''''')), x'''''')), cons(s(m''), y'''))
SUM(cons(0, cons(s(0), x'''')), cons(m''', y'''')) -> SUM(cons(s(0), x''''), cons(m''', y''''))
SUM(cons(s(s(s(n''''))), x''''), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(s(m''''), y''''))
SUM(cons(0, cons(s(s(n'''')), x'''')), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(m'''', y''''))
SUM(cons(0, cons(0, x'')), y'') -> SUM(cons(0, x''), y'')
SUM(cons(s(0), cons(0, x'''')), cons(m'', y'''')) -> SUM(cons(0, cons(0, x'''')), cons(s(m''), y''''))
SUM(cons(s(s(0)), x''''), cons(m'''', y'''')) -> SUM(cons(s(0), x''''), cons(s(m''''), y''''))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
three new Dependency Pairs are created:
SUM(cons(0, cons(0, x'')), y'') -> SUM(cons(0, x''), y'')
SUM(cons(0, cons(0, cons(0, x''''))), y'''') -> SUM(cons(0, cons(0, x'''')), y'''')
SUM(cons(0, cons(0, cons(s(s(n'''''')), x''''''))), cons(m'''''', y'''''')) -> SUM(cons(0, cons(s(s(n'''''')), x'''''')), cons(m'''''', y''''''))
SUM(cons(0, cons(0, cons(s(0), x''''''))), cons(m''''', y'''''')) -> SUM(cons(0, cons(s(0), x'''''')), cons(m''''', y''''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
SUM(cons(0, cons(0, cons(s(0), x''''''))), cons(m''''', y'''''')) -> SUM(cons(0, cons(s(0), x'''''')), cons(m''''', y''''''))
SUM(cons(s(0), cons(s(s(n'''''')), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(s(n'''''')), x'''''')), cons(s(m''), y'''))
SUM(cons(s(s(0)), x''''), cons(m'''', y'''')) -> SUM(cons(s(0), x''''), cons(s(m''''), y''''))
SUM(cons(s(s(s(n''''))), x''''), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(s(m''''), y''''))
SUM(cons(0, cons(s(s(n'''')), x'''')), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(m'''', y''''))
SUM(cons(0, cons(0, cons(s(s(n'''''')), x''''''))), cons(m'''''', y'''''')) -> SUM(cons(0, cons(s(s(n'''''')), x'''''')), cons(m'''''', y''''''))
SUM(cons(0, cons(0, cons(0, x''''))), y'''') -> SUM(cons(0, cons(0, x'''')), y'''')
SUM(cons(s(0), cons(0, x'''')), cons(m'', y'''')) -> SUM(cons(0, cons(0, x'''')), cons(s(m''), y''''))
SUM(cons(0, cons(s(0), x'''')), cons(m''', y'''')) -> SUM(cons(s(0), x''''), cons(m''', y''''))
SUM(cons(s(0), cons(s(0), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(0), x'''''')), cons(s(m''), y'''))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
two new Dependency Pairs are created:
SUM(cons(0, cons(s(s(n'''')), x'''')), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(m'''', y''''))
SUM(cons(0, cons(s(s(s(n''''''))), x'''''')), cons(m'''''', y'''''')) -> SUM(cons(s(s(s(n''''''))), x''''''), cons(m'''''', y''''''))
SUM(cons(0, cons(s(s(0)), x'''''')), cons(m'''''', y'''''')) -> SUM(cons(s(s(0)), x''''''), cons(m'''''', y''''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
SUM(cons(s(0), cons(s(0), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(0), x'''''')), cons(s(m''), y'''))
SUM(cons(0, cons(s(s(0)), x'''''')), cons(m'''''', y'''''')) -> SUM(cons(s(s(0)), x''''''), cons(m'''''', y''''''))
SUM(cons(s(0), cons(s(s(n'''''')), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(s(n'''''')), x'''''')), cons(s(m''), y'''))
SUM(cons(s(s(0)), x''''), cons(m'''', y'''')) -> SUM(cons(s(0), x''''), cons(s(m''''), y''''))
SUM(cons(s(s(s(n''''))), x''''), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(s(m''''), y''''))
SUM(cons(0, cons(s(s(s(n''''''))), x'''''')), cons(m'''''', y'''''')) -> SUM(cons(s(s(s(n''''''))), x''''''), cons(m'''''', y''''''))
SUM(cons(0, cons(0, cons(s(s(n'''''')), x''''''))), cons(m'''''', y'''''')) -> SUM(cons(0, cons(s(s(n'''''')), x'''''')), cons(m'''''', y''''''))
SUM(cons(0, cons(0, cons(0, x''''))), y'''') -> SUM(cons(0, cons(0, x'''')), y'''')
SUM(cons(s(0), cons(0, x'''')), cons(m'', y'''')) -> SUM(cons(0, cons(0, x'''')), cons(s(m''), y''''))
SUM(cons(0, cons(s(0), x'''')), cons(m''', y'''')) -> SUM(cons(s(0), x''''), cons(m''', y''''))
SUM(cons(0, cons(0, cons(s(0), x''''''))), cons(m''''', y'''''')) -> SUM(cons(0, cons(s(0), x'''''')), cons(m''''', y''''''))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
three new Dependency Pairs are created:
SUM(cons(0, cons(s(0), x'''')), cons(m''', y'''')) -> SUM(cons(s(0), x''''), cons(m''', y''''))
SUM(cons(0, cons(s(0), cons(0, x''''''))), cons(m''''', y'''''')) -> SUM(cons(s(0), cons(0, x'''''')), cons(m''''', y''''''))
SUM(cons(0, cons(s(0), cons(s(s(n'''''''')), x''''''''))), cons(m''''', y'''''')) -> SUM(cons(s(0), cons(s(s(n'''''''')), x'''''''')), cons(m''''', y''''''))
SUM(cons(0, cons(s(0), cons(s(0), x''''''''))), cons(m''''', y'''''')) -> SUM(cons(s(0), cons(s(0), x'''''''')), cons(m''''', y''''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 9
↳Polynomial Ordering
→DP Problem 2
↳Nar
SUM(cons(0, cons(s(0), cons(s(0), x''''''''))), cons(m''''', y'''''')) -> SUM(cons(s(0), cons(s(0), x'''''''')), cons(m''''', y''''''))
SUM(cons(0, cons(s(0), cons(s(s(n'''''''')), x''''''''))), cons(m''''', y'''''')) -> SUM(cons(s(0), cons(s(s(n'''''''')), x'''''''')), cons(m''''', y''''''))
SUM(cons(0, cons(0, cons(s(0), x''''''))), cons(m''''', y'''''')) -> SUM(cons(0, cons(s(0), x'''''')), cons(m''''', y''''''))
SUM(cons(0, cons(s(s(0)), x'''''')), cons(m'''''', y'''''')) -> SUM(cons(s(s(0)), x''''''), cons(m'''''', y''''''))
SUM(cons(s(0), cons(s(s(n'''''')), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(s(n'''''')), x'''''')), cons(s(m''), y'''))
SUM(cons(s(s(0)), x''''), cons(m'''', y'''')) -> SUM(cons(s(0), x''''), cons(s(m''''), y''''))
SUM(cons(s(s(s(n''''))), x''''), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(s(m''''), y''''))
SUM(cons(0, cons(s(s(s(n''''''))), x'''''')), cons(m'''''', y'''''')) -> SUM(cons(s(s(s(n''''''))), x''''''), cons(m'''''', y''''''))
SUM(cons(0, cons(0, cons(s(s(n'''''')), x''''''))), cons(m'''''', y'''''')) -> SUM(cons(0, cons(s(s(n'''''')), x'''''')), cons(m'''''', y''''''))
SUM(cons(0, cons(0, cons(0, x''''))), y'''') -> SUM(cons(0, cons(0, x'''')), y'''')
SUM(cons(s(0), cons(0, x'''')), cons(m'', y'''')) -> SUM(cons(0, cons(0, x'''')), cons(s(m''), y''''))
SUM(cons(0, cons(s(0), cons(0, x''''''))), cons(m''''', y'''''')) -> SUM(cons(s(0), cons(0, x'''''')), cons(m''''', y''''''))
SUM(cons(s(0), cons(s(0), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(0), x'''''')), cons(s(m''), y'''))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
SUM(cons(0, cons(s(0), cons(s(0), x''''''''))), cons(m''''', y'''''')) -> SUM(cons(s(0), cons(s(0), x'''''''')), cons(m''''', y''''''))
SUM(cons(0, cons(s(0), cons(s(s(n'''''''')), x''''''''))), cons(m''''', y'''''')) -> SUM(cons(s(0), cons(s(s(n'''''''')), x'''''''')), cons(m''''', y''''''))
SUM(cons(0, cons(0, cons(s(0), x''''''))), cons(m''''', y'''''')) -> SUM(cons(0, cons(s(0), x'''''')), cons(m''''', y''''''))
SUM(cons(0, cons(s(s(0)), x'''''')), cons(m'''''', y'''''')) -> SUM(cons(s(s(0)), x''''''), cons(m'''''', y''''''))
SUM(cons(0, cons(s(s(s(n''''''))), x'''''')), cons(m'''''', y'''''')) -> SUM(cons(s(s(s(n''''''))), x''''''), cons(m'''''', y''''''))
SUM(cons(0, cons(0, cons(s(s(n'''''')), x''''''))), cons(m'''''', y'''''')) -> SUM(cons(0, cons(s(s(n'''''')), x'''''')), cons(m'''''', y''''''))
SUM(cons(0, cons(0, cons(0, x''''))), y'''') -> SUM(cons(0, cons(0, x'''')), y'''')
SUM(cons(0, cons(s(0), cons(0, x''''''))), cons(m''''', y'''''')) -> SUM(cons(s(0), cons(0, x'''''')), cons(m''''', y''''''))
POL(SUM(x1, x2)) = x1 POL(0) = 0 POL(cons(x1, x2)) = 1 + x2 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 10
↳Dependency Graph
→DP Problem 2
↳Nar
SUM(cons(s(0), cons(s(s(n'''''')), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(s(n'''''')), x'''''')), cons(s(m''), y'''))
SUM(cons(s(s(0)), x''''), cons(m'''', y'''')) -> SUM(cons(s(0), x''''), cons(s(m''''), y''''))
SUM(cons(s(s(s(n''''))), x''''), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(s(m''''), y''''))
SUM(cons(s(0), cons(0, x'''')), cons(m'', y'''')) -> SUM(cons(0, cons(0, x'''')), cons(s(m''), y''''))
SUM(cons(s(0), cons(s(0), x'''''')), cons(m'', y''')) -> SUM(cons(0, cons(s(0), x'''''')), cons(s(m''), y'''))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 11
↳Polynomial Ordering
→DP Problem 2
↳Nar
SUM(cons(s(s(s(n''''))), x''''), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(s(m''''), y''''))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
SUM(cons(s(s(s(n''''))), x''''), cons(m'''', y'''')) -> SUM(cons(s(s(n'''')), x''''), cons(s(m''''), y''''))
POL(SUM(x1, x2)) = 1 + x1 POL(cons(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
→DP Problem 2
↳Nar
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
two new Dependency Pairs are created:
WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))
WEIGHT(cons(s(n''), cons(m'', x''))) -> WEIGHT(sum(cons(n'', cons(m'', x'')), cons(s(0), x'')))
WEIGHT(cons(0, cons(m', x''))) -> WEIGHT(sum(cons(m', x''), cons(0, x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 13
↳Narrowing Transformation
WEIGHT(cons(0, cons(m', x''))) -> WEIGHT(sum(cons(m', x''), cons(0, x'')))
WEIGHT(cons(s(n''), cons(m'', x''))) -> WEIGHT(sum(cons(n'', cons(m'', x'')), cons(s(0), x'')))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
two new Dependency Pairs are created:
WEIGHT(cons(s(n''), cons(m'', x''))) -> WEIGHT(sum(cons(n'', cons(m'', x'')), cons(s(0), x'')))
WEIGHT(cons(s(s(n')), cons(m''', x'''))) -> WEIGHT(sum(cons(n', cons(m''', x''')), cons(s(s(0)), x''')))
WEIGHT(cons(s(0), cons(m''', x'''))) -> WEIGHT(sum(cons(m''', x'''), cons(s(0), x''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 13
↳Nar
...
→DP Problem 14
↳Narrowing Transformation
WEIGHT(cons(s(0), cons(m''', x'''))) -> WEIGHT(sum(cons(m''', x'''), cons(s(0), x''')))
WEIGHT(cons(s(s(n')), cons(m''', x'''))) -> WEIGHT(sum(cons(n', cons(m''', x''')), cons(s(s(0)), x''')))
WEIGHT(cons(0, cons(m', x''))) -> WEIGHT(sum(cons(m', x''), cons(0, x'')))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
two new Dependency Pairs are created:
WEIGHT(cons(0, cons(m', x''))) -> WEIGHT(sum(cons(m', x''), cons(0, x'')))
WEIGHT(cons(0, cons(s(n'), x'''))) -> WEIGHT(sum(cons(n', x'''), cons(s(0), x''')))
WEIGHT(cons(0, cons(0, x'''))) -> WEIGHT(sum(x''', cons(0, x''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 13
↳Nar
...
→DP Problem 15
↳Polynomial Ordering
WEIGHT(cons(0, cons(0, x'''))) -> WEIGHT(sum(x''', cons(0, x''')))
WEIGHT(cons(0, cons(s(n'), x'''))) -> WEIGHT(sum(cons(n', x'''), cons(s(0), x''')))
WEIGHT(cons(s(s(n')), cons(m''', x'''))) -> WEIGHT(sum(cons(n', cons(m''', x''')), cons(s(s(0)), x''')))
WEIGHT(cons(s(0), cons(m''', x'''))) -> WEIGHT(sum(cons(m''', x'''), cons(s(0), x''')))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
WEIGHT(cons(0, cons(0, x'''))) -> WEIGHT(sum(x''', cons(0, x''')))
WEIGHT(cons(0, cons(s(n'), x'''))) -> WEIGHT(sum(cons(n', x'''), cons(s(0), x''')))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
POL(0) = 1 POL(cons(x1, x2)) = x1 + x2 POL(WEIGHT(x1)) = x1 POL(nil) = 1 POL(sum(x1, x2)) = x2 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 13
↳Nar
...
→DP Problem 16
↳Polynomial Ordering
WEIGHT(cons(s(s(n')), cons(m''', x'''))) -> WEIGHT(sum(cons(n', cons(m''', x''')), cons(s(s(0)), x''')))
WEIGHT(cons(s(0), cons(m''', x'''))) -> WEIGHT(sum(cons(m''', x'''), cons(s(0), x''')))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost
WEIGHT(cons(s(s(n')), cons(m''', x'''))) -> WEIGHT(sum(cons(n', cons(m''', x''')), cons(s(s(0)), x''')))
WEIGHT(cons(s(0), cons(m''', x'''))) -> WEIGHT(sum(cons(m''', x'''), cons(s(0), x''')))
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
POL(0) = 0 POL(cons(x1, x2)) = 1 + x2 POL(WEIGHT(x1)) = 1 + x1 POL(nil) = 0 POL(sum(x1, x2)) = x2 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 13
↳Nar
...
→DP Problem 17
↳Dependency Graph
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n
innermost