R
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), s(y)) -> MINUS(x, y)
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
GCD(s(x), s(y)) -> LE(y, x)
IFGCD(true, x, y) -> GCD(minus(x, y), y)
IFGCD(true, x, y) -> MINUS(x, y)
IFGCD(false, x, y) -> GCD(minus(y, x), x)
IFGCD(false, x, y) -> MINUS(y, x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
LE(s(x), s(y)) -> LE(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
one new Dependency Pair is created:
LE(s(x), s(y)) -> LE(x, y)
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
one new Dependency Pair is created:
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
POL(LE(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
MINUS(s(x), s(y)) -> MINUS(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
one new Dependency Pair is created:
MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
one new Dependency Pair is created:
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
→DP Problem 3
↳Nar
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
POL(MINUS(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳Nar
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Narrowing Transformation
IFGCD(false, x, y) -> GCD(minus(y, x), x)
IFGCD(true, x, y) -> GCD(minus(x, y), y)
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
three new Dependency Pairs are created:
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Narrowing Transformation
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
IFGCD(true, x, y) -> GCD(minus(x, y), y)
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(false, x, y) -> GCD(minus(y, x), x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
three new Dependency Pairs are created:
IFGCD(true, x, y) -> GCD(minus(x, y), y)
IFGCD(true, x'', 0) -> GCD(x'', 0)
IFGCD(true, 0, y') -> GCD(0, y')
IFGCD(true, s(x''), s(y'')) -> GCD(minus(x'', y''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 11
↳Narrowing Transformation
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
IFGCD(true, s(x''), s(y'')) -> GCD(minus(x'', y''), s(y''))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(false, x, y) -> GCD(minus(y, x), x)
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
three new Dependency Pairs are created:
IFGCD(false, x, y) -> GCD(minus(y, x), x)
IFGCD(false, 0, y') -> GCD(y', 0)
IFGCD(false, x'', 0) -> GCD(0, x'')
IFGCD(false, s(y''), s(x'')) -> GCD(minus(x'', y''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 12
↳Narrowing Transformation
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
IFGCD(true, s(x''), s(y'')) -> GCD(minus(x'', y''), s(y''))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(false, s(y''), s(x'')) -> GCD(minus(x'', y''), s(y''))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
three new Dependency Pairs are created:
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))
GCD(s(s(s(y'))), s(s(s(x')))) -> IFGCD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 13
↳Narrowing Transformation
GCD(s(s(s(y'))), s(s(s(x')))) -> IFGCD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
IFGCD(false, s(y''), s(x'')) -> GCD(minus(x'', y''), s(y''))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(true, s(x''), s(y'')) -> GCD(minus(x'', y''), s(y''))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
three new Dependency Pairs are created:
IFGCD(true, s(x''), s(y'')) -> GCD(minus(x'', y''), s(y''))
IFGCD(true, s(x'''), s(0)) -> GCD(x''', s(0))
IFGCD(true, s(0), s(y''')) -> GCD(0, s(y'''))
IFGCD(true, s(s(x')), s(s(y'))) -> GCD(minus(x', y'), s(s(y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 14
↳Polynomial Ordering
IFGCD(true, s(x'''), s(0)) -> GCD(x''', s(0))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
IFGCD(true, s(x'''), s(0)) -> GCD(x''', s(0))
POL(0) = 0 POL(GCD(x1, x2)) = x1 POL(IF_GCD(x1, x2, x3)) = x2 POL(true) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 17
↳Dependency Graph
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 15
↳Narrowing Transformation
GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))
IFGCD(true, s(s(x')), s(s(y'))) -> GCD(minus(x', y'), s(s(y')))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
IFGCD(false, s(y''), s(x'')) -> GCD(minus(x'', y''), s(y''))
GCD(s(s(s(y'))), s(s(s(x')))) -> IFGCD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
three new Dependency Pairs are created:
IFGCD(false, s(y''), s(x'')) -> GCD(minus(x'', y''), s(y''))
IFGCD(false, s(0), s(x''')) -> GCD(x''', s(0))
IFGCD(false, s(y'''), s(0)) -> GCD(0, s(y'''))
IFGCD(false, s(s(y')), s(s(x'))) -> GCD(minus(x', y'), s(s(y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 16
↳Polynomial Ordering
GCD(s(s(s(y'))), s(s(s(x')))) -> IFGCD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
IFGCD(true, s(s(x')), s(s(y'))) -> GCD(minus(x', y'), s(s(y')))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
IFGCD(false, s(s(y')), s(s(x'))) -> GCD(minus(x', y'), s(s(y')))
GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
IFGCD(true, s(s(x')), s(s(y'))) -> GCD(minus(x', y'), s(s(y')))
IFGCD(false, s(s(y')), s(s(x'))) -> GCD(minus(x', y'), s(s(y')))
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
POL(0) = 0 POL(GCD(x1, x2)) = x1 + x2 POL(false) = 0 POL(minus(x1, x2)) = x1 POL(true) = 0 POL(IF_GCD(x1, x2, x3)) = x2 + x3 POL(s(x1)) = 1 + x1 POL(le(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 18
↳Dependency Graph
GCD(s(s(s(y'))), s(s(s(x')))) -> IFGCD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost