R
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), s(y)) -> MINUS(x, y)
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
GCD(s(x), s(y)) -> LE(y, x)
IFGCD(true, x, y) -> GCD(minus(x, y), y)
IFGCD(true, x, y) -> MINUS(x, y)
IFGCD(false, x, y) -> GCD(minus(y, x), x)
IFGCD(false, x, y) -> MINUS(y, x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
LE(s(x), s(y)) -> LE(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
LE(s(x), s(y)) -> LE(x, y)
trivial
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
MINUS(s(x), s(y)) -> MINUS(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
MINUS(s(x), s(y)) -> MINUS(x, y)
trivial
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Nar
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Narrowing Transformation
IFGCD(false, x, y) -> GCD(minus(y, x), x)
IFGCD(true, x, y) -> GCD(minus(x, y), y)
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
three new Dependency Pairs are created:
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Narrowing Transformation
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
IFGCD(true, x, y) -> GCD(minus(x, y), y)
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(false, x, y) -> GCD(minus(y, x), x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
three new Dependency Pairs are created:
IFGCD(true, x, y) -> GCD(minus(x, y), y)
IFGCD(true, x'', 0) -> GCD(x'', 0)
IFGCD(true, 0, y') -> GCD(0, y')
IFGCD(true, s(x''), s(y'')) -> GCD(minus(x'', y''), s(y''))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
IFGCD(true, s(x''), s(y'')) -> GCD(minus(x'', y''), s(y''))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(false, x, y) -> GCD(minus(y, x), x)
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
three new Dependency Pairs are created:
IFGCD(false, x, y) -> GCD(minus(y, x), x)
IFGCD(false, 0, y') -> GCD(y', 0)
IFGCD(false, x'', 0) -> GCD(0, x'')
IFGCD(false, s(y''), s(x'')) -> GCD(minus(x'', y''), s(y''))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Instantiation Transformation
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
IFGCD(true, s(x''), s(y'')) -> GCD(minus(x'', y''), s(y''))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(false, s(y''), s(x'')) -> GCD(minus(x'', y''), s(y''))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
two new Dependency Pairs are created:
IFGCD(true, s(x''), s(y'')) -> GCD(minus(x'', y''), s(y''))
IFGCD(true, s(x''''), s(0)) -> GCD(minus(x'''', 0), s(0))
IFGCD(true, s(s(y'''')), s(s(x''''))) -> GCD(minus(s(y''''), s(x'''')), s(s(x'''')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Argument Filtering and Ordering
IFGCD(true, s(x''''), s(0)) -> GCD(minus(x'''', 0), s(0))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
IFGCD(true, s(x''''), s(0)) -> GCD(minus(x'''', 0), s(0))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
{GCD, IFGCD} > s > 0
{GCD, IFGCD} > s > minus
GCD(x1, x2) -> GCD(x1, x2)
IFGCD(x1, x2, x3) -> IFGCD(x2)
s(x1) -> s(x1)
minus(x1, x2) -> minus(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Dependency Graph
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Instantiation Transformation
IFGCD(true, s(s(y'''')), s(s(x''''))) -> GCD(minus(s(y''''), s(x'''')), s(s(x'''')))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
IFGCD(false, s(y''), s(x'')) -> GCD(minus(x'', y''), s(y''))
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost
two new Dependency Pairs are created:
IFGCD(false, s(y''), s(x'')) -> GCD(minus(x'', y''), s(y''))
IFGCD(false, s(0), s(s(x''''))) -> GCD(minus(s(x''''), 0), s(0))
IFGCD(false, s(s(y'''')), s(s(x''''))) -> GCD(minus(s(x''''), s(y'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 11
↳Remaining Obligation(s)
IFGCD(false, s(s(y'''')), s(s(x''''))) -> GCD(minus(s(x''''), s(y'''')), s(s(y'''')))
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
IFGCD(true, s(s(y'''')), s(s(x''''))) -> GCD(minus(s(y''''), s(x'''')), s(s(x'''')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(0, x) -> 0
minus(s(x), s(y)) -> minus(x, y)
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, x, y) -> gcd(minus(x, y), y)
ifgcd(false, x, y) -> gcd(minus(y, x), x)
innermost